Further aspects of regular spatial hexagons

Fritz Siegerist and Karl Wirth

In the following, we refer to article «Regular spatial hexagons> (see also Elem. Math.)
with regard to concepts, notations, references to theorems etc. In particular, we consider
hexagons with consecutive vertices vy, vo, ..., Ug, six diagonals ¢ between a vertex and

the next but one, and three remaining diagonals x = V104, y = V205, and z = V3Vg.

1. Pentas
Consider pentas with z=0.

a. Show that the diagonals = and y are given as follows:

O<z<V3 y=2

2 -3
x2—4

b. What about x <y, x =y, >y, and the boundary cases x =0 and z = V3?2
c¢. There are two pentas with the same vertices. In which way are they related?
d. Examine the convex hull of pentas including the special cases.

e. Which penta has the largest volume of the convex hull?

2. Relations between diagonals of flexible hexagons
a. Verify the symmetric relation
0 =+ z%y*

+4(¢® + D2’y — 2(¢* + 1)a*y? (2 +y)°
+6(¢* + 1)2*y® — 4(¢* - 1)%zy(z + ) + (¢* — 1)*(z + y)*
—4(¢* = 1)’ay +2(¢* - 1)*(z +y)°
= (@ = 1) +1)(7¢° - 1).

Of course, there are corresponding relations with the diagonals y, z and z, z.

b. Determine once more the diagonals of boats, crosses, twist, and pentas.
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3. Line segments on the prime symmetry axis of flexible hexagons

Let s, be the line segment between the midpoints of the diagonals z and y, and cor-
respondingly s,. and s, (all lying on the prime symmetry axis).

a. Show that

_1\/<x2—q2—1><y2—q2—1>

S =
w9 22—qg2—-1

b. Discuss the case s,y = 5.

c. Show that s, = s, + s, if and only if z is largest.

4. A Duality of flexible hexagons

Consider the representation of flexible hexagons by diagonal points, as shown in Figu-
re 12. A straight line through the origin pierces the corresponding area in exactly two
points, which represent what we call dual hexagons.

a. Determine for a boat with diagonals g, z, y, and z the associated diagonals ¢’, z’, y’,
and 2’ of the dual hexagon.

b. Determine ¢’ for crosses and twists.

5. Vertex coordinates of flexible s-hexagons based on the prime symmetry

We refer to Property 8. Let v; = (1, 0,0) and vo = (a, b, k) with h,, > 0 be two vertices
of flexible s-hexagons where the prime symmetry axis coincides with the third coordi-
nate axis. Furthermore, assume that

1
—1<a<§ (a #0) and /|a| (a+1) <b <1 —a?.

a. Determine the vertices vy, v, ..., vg of these flexible s-hexagons and show that their
diagonals satisfy z > y > z.

b. What is the significance of the boundary values of b?

6. Largest convex hull of hexagons (with side length 1)

a. Determine the largest volume of the convex hull for crowns, stars, boats, crosses,
and twists.

b. What can be said about all hexagons?



Solutions

1. a. Use the Pythagorean theorem or insert g=1 in Theorem 14.
Note that x and y are exchangeable, i.e., we have a self-inverse function.
b. $<yif0<x<\/§, m:yifx:\@, z>yif\/§<z<\/§.
Boundary cases: rhombus with two double vertices for both xt=0 and z = V3.
c¢. The two chiral pentas are enantiomeric (mirrored to each other). One of them is ob-
tained from the other by a reflection across the plane that is spanned by the prime sym-
metry axis and one of the perpendicular diagonals x or y.

d. In general, the convex hull is a hexahedron (polyhedron with six faces), and it has
the symmetry group Cs, (Schoenflies symbol). Four faces are equilateral triangles ha-
ving the double vertex as a common point (and forming a sort of cupola, as shown in
Figure E21), and two faces are isosceles triangles. Special cases: x = 1 gives a del-
tahedron (polyhedron whose faces are congruent equilateral triangles) with symmetry
group D3y, and 2= 1/2 gives half of an octahedron with symmetry group C..

e. One obtains congruent pentas with z = \/g orr=2 %, and volume i.

2. a. Square twice both sides of the corresponding equation in Theorem 14.

b. These special cases are obtained by equating two of the diagonals z, y, and z, and
by setting ¢ =1, respectively.

3. a. Needs an extensive calculation by using the coordinates of Theorem 13. Note that
the formula is also true in the case of the limit z — 1/1+¢2 where the denominator be-
comes 0.

b. One obtains with s,, # 0 crosses or twists, and with s,, = 0 boats. In all cases, a

Symmetry maps s,,, onto s;.. Furthermore, it holds s, 5,. = %(zzfqul), which im-

plies that y and z intersect each other only in the case of a boat.

c. Consider in all flexible hexagons with a given ¢ the longest diagonal z. It lies in
the symmetry plane of a cross or on a symmetry axis of a twist, both impliying s, =
Sz-+5y.. A continuous transformation of the considered hexagons preserves this equa-
lity until x =y or x = z, which applies in a boat.

3—¢2 2d
4. a.q'= | ?ZQ (self-inverse function), d' = [ where d is z, y, or z (implying

dd’ =2 for the longer diagonals d). The dual hexagon of a boat is a boat as well.

= \/3+5q2+ (14 42)/3(3+ 4q% — 4q*)

b. fi <1,
2(1+ 3¢+ 3¢%) ora
50 —3¢3 + (14 ¢2)\/3(4 — ¢
N G o VI CEa)) By
2(1+ 3¢%)

The union of these two functions is self-inverse. The dual hexagon of a cross is a twist,
and conversely.



5. a. Calculation leads to

via = (£1,0,0), vo5 = (Fa,=+b, hy), v3e = (Fa,xc, —h.), where

1
c= @ (follows immediately from the p-hexagon property),
hy = /2@ 1) + (@—1)0 —b* + 2r,
RVEY
1
h, = —a2(a+1)2 + (a2 —1)b2? + 2b* + 2r, with
\/§b\/ (a+1)%+( )

r=/a*(a+1) +a2(a—1)(a+1)3b24(1—2a) (a+1)20* + (a2 — 1)b6 +b8.

By taking into account the ranges of the parameters a and b, it is shown that the diago-
nals =2, y=2+v/a2+b2, and z =2+v/a2+c? satisfy x > y > z. The side s and diago-
nal g of the resulting s-hexagons are given as follows:

V2
s = ——+/a?(a+1)2 + (2a—1)(a—1)b% + b* + r,
\/§b\/ (a+1)% +( )(a—1)
1
q= ﬁ\/2a2(a+1)2 +3(a+1)202 + (a2 —1)b2 + 2b% + 2r.

These s-hexagons represent all classes of similar flexible s-hexagons.

b. The lower bound b=+/|a| (a + 1) leads to crosses for a <0 and to twists for a >0,
the upper bound b=+/1 — a? to boats.

¢. For a =0 and b # 0, one obtains pentas (for b= 1 a penta-boat). The value a = —1

gives a line segment with two triple vertices and a = % a planar (regular) hexagon. The

case (a,b) = (0,0) needs some limit considerations in order to obtain a rhombus with

two double vertices: v1 4 = (£1,0,0), va5 = (0,0,1/v/3), v36 = (0,0, —1//3).

The following figure illustrates the results; each black line in the area represents hexa-
. q .. .

gons with a fixed 3 (iso-g/s-line):

penta-boat

a=120°

crosses
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6. a. crown: ¢ = /2, volume V = % ~ 0.6667;

star: ¢ = /2, V=1 ~ 0.1667;

boat: ¢ = 1/ 5(9 + v201), V= %\/ 35 (10563 + 737v/201) ~ 0.5293;
Cross: q = %, V= % ~ 0.2222;

twist: ¢ ~ 1.5059 (solution of the equation 3¢® — 21¢5+ 42¢* — 24¢*>+ 4 = 0),
V ~ 0.6481.

b. Among all flexible hexagons, we could not find an exact result, but based on nume-
rical computation, we presume that the largest V' appears in the case of the twist. This
would imply that, among all hexagons, the maximum volume will be assumed in the
crown with V= 2.

The final figure shows the volume V as a function of the diagonals g and z for flexible
hexagons (with y > x > z or z > x > y) as well as for rigid hexagons. There are two
families of black lines, namely iso-g-lines and iso-V-lines. (For the largest V' of pentas,
see solution 1e.)

— crowns
— boats
— pentas
— twists
—— crosses

—— stars



