Further aspects of regular spatial heptagons

Fritz Siegerist and Karl Wirth

In the following, we refer to the manuscript «<Regular spatial heptagons based on sym-
metry> (see also Elem. Math.) with regard to concepts, notations, references to theo-
rems etc. In particular, we consider heptagons with consecutive vertices vy, v, ..., U7,
side length 1, and seven diagonals of length ¢ between a vertex and the next but one.
The seven remaining diagonals are said to be the main diagonals.

. Special scalar products in heptagons

Let u; j be the vector that points in a heptagon from v; to v; (indices larger than 7 are
understood modulo 7). Then, it holds the following:

2
Ug k43  Wetlkt2 = 2Ug ky3 - Ugy1kts5 = q° — 1,

(Wk k43 + Uk k4a) - Upg2,k45 = 0.

The equations are the consequence of a general property of a (possibly degenerate)
tetrahedron according to the figure (e.g. see [1]):

. Heptagons with g =1 as limit figures

We consider the connected components for a fixed ¢ # 1 according to Connectedness
4. With ¢ — 1, they become subsets of all heptagons with ¢ = 1. Which heptagons of
Theorem 4 represent these subsets? To answer this question, we use a notation based
on the fact that there is a ono-to-one correspondence between the incongruent plane-
symmetric heptagons and the connected components.

Definition. Clarge,up(q) is the connected component (of the corresponding ¢) containing
the large and upper plane-symmetric heptagon; and accordingly for the other compo-
nents.
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Taking into account Figures 3 and 4 as well as the remarks to Theorem 4, one obtains
the following heptagons from Theorem 4:

from I#rll Ciarge,up (), those with v7; for ¢ € [—2¢y, 0] and v¥ for ¢ € [0, T — 0],
from 1(1171:I11 Clarge jow (q), those with v7 for ¢ € [0, 2¢0] and v for ¢ € [—¢y, 0],

from glilil Clarge,up(q), those with v%; for ¢ € [—2¢9, 0] and v¥ for ¢ € [—¢y, 0],
from 511111 Clarge jow () those with v7 for ¢ € [T —4¢pq, 2¢0),

from Eﬁl Comaltup(q). those with v7 for ¢ € [0, m1—4¢pg] and v¥ for ¢ € [0, m—2¢pq],

from 111111 Csmanlow (@), those with vZ for ¢ € [T — 2, T— g
q

3. Some special heptagons
We present three statements that can be verified by computation.

a. There are only the following five incongruent heptagons with exactly five vertices in
a plane.

pny pn2

png pns
From the heptagons pn; (penta), pni, pna, pns are plane- and pny, pns line-symmetric.
Further, pn; and pn,4 have the same angle oo ~48.011°, and one heptagon is obtained
from the other by reflecting a vertex and its adjacent sides on the pentagon plane. The
same is true for pno and pns with the common angle a~63.317°. The angle of pnj is

a=51.229°. All these symmetric heptagons are large and lower, except pno which is
small and upper.

pns

We add that only pl4 and [k have exactly six vertices in a plane (double vertex counted
twice); and of course, the stars have seven of them.



b. There are only the following nine incongruent heptagons with exactly four vertices
forming a rectangle.

rcy TrcCo rcs

TCg rcy rcs

rcy4

TCo

The heptagons rc; (rectangle) are plane-symmetric and appear always pairwise in the
upper and lower form; an exception is only the asymmetric rcg.

In the first row, we have rc; and rce with angle = 60° (they are the same as pl3 and pl5
in [2]), and rc3 and rcg with a=90°.

The heptagons of the second row can be obtained without calculation as follows: For
rcs and rcg, consider a regular pentagon and divide it along a diagonal ¢ into two parts.
Then, insert two new sides of length 1 between the parts in such a way that they are
parallel. The heptagons rc; and rcg are now achieved by rotating both parts around g,
where their common angle is o =108° (¢ = ®). The heptagons rc7 and rcg are given
by «=36° (¢=1/®), and they can be obtained in a similar way, by starting with a pen-
tagram and inserting new sides such that they are crossed. The four heptagons may be
called golden heptagons.

Finally, the angle of the asymmetric rcg is aw~49.354°. Note that one side pierces the
rectangle. Regarding the two possible connected components, we have:

17C9 € Clarge,up(q) With ¢~0.835.



¢. There are only the following three incongruent heptagons with three consecutive
sides as edges that determine a cube.

cby cby cbs

The asymmetric heptagons cb; (cube) can be characterized with respect to the cube as
follows: In cb; and cbs a fourth side lies on the surface but only in ¢b; a fifth side par-
tially inside the cube, and in cb3 no fourth side lies on the surface.

These heptagons belong to the two connected components with angle o = 90° as fol-
lows:

cbi € Clarge,low(Q) and cbo, cbs € Clarge,up(Q) with g= \/§

. z-heptagons

By defintion, a z-heptagon contains a z-shape, i.e., three consecutive sides in a plane as
being two opposite sides and a diagonal of a parallelogram. Without loss of generality,
we can assume that the z-shape is given by the vertex sequence v v2v3v4. And to avoid
congruent z-heptagons with different diagonal lengths v5vg (related to each other by the
vertex permutation (v1v4)(v2vs)(vsv7)(ve)), We additionally require that T30 < T30Us.
Then, Figure 1 shows the curve resulting from the diagonal pairs (¢, 7305 ) of all z-hep-
tagons. Each point of this curve represents exactly one z-heptagon, except the point at
q=1 that shows two of them. It follows that z-heptagons only exist for

q€1q1,qs] with 3 =~ 0.7690 (a1 ~ 45.22°) and g3~ 1.195 (a3~ 73.41°).

Furthermore, for a fixed ¢, the number of incongruent z-heptagons is given as follows:
one for g € [g1,1[U{g3}, two for ¢ € {1} U]q2, ¢3], and three for ¢ €]1, g2, where
G2~1.062 (a3~ 64.14°); see the corresponding red colored boundaries in Figure 1.

In Figure 1, we also show a series of z-heptagons zh; (each with drawn diagonal vovg).
Note that zhs =pl3 and zhs =k (see [2]). Further, there are exactly two incongruent
z-heptagons with two double z-shapes, namely zhg and zhq.

It should be mentioned that we only know the exact solutions in a few single cases: ¢;
and gs are the absolute values of the real solutions of

1125 +282° —5a:* — 322 +242% + 162 —20 = 0,

and zhy is detemined by 7 = /1 +2—\% ~ 1.161 (a~ 71.00°).
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Figure 1: z-heptagons represented by diagonal pairs (¢, T20s) and examples.



There is a continous transformation of z-heptagons that traverse every zh; of Figure 1
in the order of (Zhl, Zhg, Zh3, Zh7, Zhg, Zhll, Zhlo, Zhg, Zhﬁ, Zh4, Zh5) And for each
q#1, they belong to a connected component as follows:

from zhy until 2hy t0 Ciage,up(q), from zhy until zhs t0 Comannup(q)-

If the transformation is continued beyond zhs, as shown in Figure 2, the zh; appear in
reverse order (selected zh; are indicated). Thus, one finally obtains the original hep-
tagon zhi, so that the transformation process is closed. Note that ¢ varies piecewise
linearly.!

Zhl Zh3 zh112h10 Z-h4 Zh5 Zh4 zhlozhn Zh3 Zhl
Figure 2: Continuous transformation within the z-heptagons.

Since the set of all z-heptagons contains the plane-symmetric zhg, it is also possible to
obtain by continuous transformations the mirror-inverted z-heptagons (Lemma in [2]).
Thus, we have: The set of all z-heptagons is connected.

. Extreme length of main diagonals in heptagons with a fixed g

Four consecutive vertices of a heptagon form a tetrahedron, where one edge is a main
diagonal whose length is denoted by d. We first consider this tetrahedron independently
of the heptagon and assume that q is fixed. Then, as illustrated in the following figure,
d monotonically increases from a minimum length m to a maximum M by varying ¢
from 0° to 180° (¢ being the dihedral angle at the edge opposite to that of length d).

1A corresponding animation can be found under the menu ”Animations & Figures”.
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In the boundary cases we obtain an isosceles trapezoid and a parallelogram, and from
the Ptolemy’s theorem and the parallelogram law it immediately follows:

m=|¢®>— 1], M =+/2¢> + 1.

When do these boundary cases appear in heptagons? As can easily be seen, the answer
to this question is as follows:

- For a fixed q, the smallest main diagonal length m is assumed in all plane-symmetric
heptagons.

- For a fixed q, the largest main diagonal length M is assumed in all z-heptagons.
Plane-symmetric heptagons exist for any possible g, i.e., for ¢ from [g1, g3] (see [2]),
whereas z-heptagons occur only for ¢ from the subinterval ¢, g3]. Therefore, for ¢

from [q1, g3] \ [¢1, g3, the largest main diagonal must be smaller than M ; but a charac-
terization of these cases remains open.
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