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In the following, we refer to the manuscript <<Regular spatial heptagons based on sym-
metry>> (see also Elem. Math.) with regard to concepts, notations, references to theo-
rems etc. In particular, we consider heptagons with consecutive vertices v1, v2, ..., v7,
side length 1, and seven diagonals of length q between a vertex and the next but one.
The seven remaining diagonals are said to be the main diagonals.

1. Special scalar products in heptagons

Let ui,j be the vector that points in a heptagon from vi to vj (indices larger than 7 are
understood modulo 7). Then, it holds the following:

uk,k+3 · uk+1,k+2 = 2uk,k+3 · uk+1,k+5 = q2 − 1,

(uk,k+3 + uk,k+4) · uk+2,k+5 = 0.

The equations are the consequence of a general property of a (possibly degenerate)
tetrahedron according to the figure (e.g. see [1]):

u · u =
1

2
(x2 + x 2 − y2 − y 2).

Proof. The equations are a consequence of the following general property of a (possi-
bly degenerate) tetrahedron according to the figure (e.g. see [5]):

u · u =
1

2
(x2 + x 2 � y2 � y 2).
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The third equation follows more directly from the symmetry of the tetrahedron with
the edge vectors uk+2,k+5 and 1

2 (uk,k+3 + uk,k+4), where in the heptagon the latter
vector points from a vertex to the middle of the opposite side.

Theorem 3. A heptagon is asymmetric, plane- or line-symmetric.

Proof. Clearly, a heptagon symmetry is ring-preserving, i.e., it must preserve the se-
quence of vertices. A symmetry group of highest order occurs when all main diagonals
are equal. Then it is isomorphic to the dihedral group D7, and the induced vertex
permutations are generated by the cycle � = (v1v2v3v4v5v6v7) and the involution ⇡.
Since each �k (1  k  6) is a cycle of length seven, it can only be induced by
a rotation of a planar heptagon, so we have the symmetry group of each of the three
stars which obviously are both plane- and line-symmetric. The nonplanar heptagons are
therefore asymmetric or their symmetry group is isomorphic to a group generated by ⇡.
Since ⇡ is an involution, it could only be induced by a plane-, line-, or point-reflection;
the latter, however, can be excluded because one vertex would be the inversion center
and thus ↵ = 180�.

We will essentially refer to what we subsume under connectedness based on definitions
as follows: By a continuous transformation of a heptagon we mean a one-parametric
continuous transformation of its vertices while retaining the regularity conditions. A set
of heptagons is called connected if, within the set, each heptagon can be continuously
transformed into each other. Consequently, a set of heptagons is the disjoint union of
maximal connected subsets, which are said to be its connection components.

Lemma. The set of all heptagons, which are congruent to those of a connected set with
at least one plane-symmetric heptagon, is also connected.

Proof. A proper congruence map can be implemented by a continuous transformation
which is a motion. For an improper congruence map, consider first a transformation up
to a plane-symmetric heptagon. Then continue with a second transformation obtained
by reflecting each heptagon of the first at the mirror plane of this plane-symmetric hep-
tagon. This leads to the mirror image of the starting heptagon, and it remains to apply a
motion.

Without loss of generality, we assume in the next two sections that the vertex v1 of
symmetric heptagons lies on the symmetry element (plane or line), which implies three
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2. Heptagons with q=1 as limit figures

We consider the connected components for a fixed q 6= 1 according to Connectedness
4. With q→ 1, they become subsets of all heptagons with q= 1. Which heptagons of
Theorem 4 represent these subsets? To answer this question, we use a notation based
on the fact that there is a ono-to-one correspondence between the incongruent plane-
symmetric heptagons and the connected components.

Definition. Clarge,up(q) is the connected component (of the corresponding q) containing
the large and upper plane-symmetric heptagon; and accordingly for the other compo-
nents.
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Taking into account Figures 3 and 4 as well as the remarks to Theorem 4, one obtains
the following heptagons from Theorem 4:

from lim
q↑1
Clarge,up(q), those with v′7 for ϕ∈ [−2ϕ0, 0] and v′′7 for ϕ∈ [0, π−ϕ0],

from lim
q↑1
Clarge,low(q), those with v′7 for ϕ∈ [0, 2ϕ0] and v′′7 for ϕ∈ [−ϕ0, 0],

from lim
q↓1
Clarge,up(q), those with v′7 for ϕ∈ [−2ϕ0, 0] and v′′7 for ϕ∈ [−ϕ0, 0],

from lim
q↓1
Clarge,low(q), those with v′7 for ϕ∈ [π−4ϕ0, 2ϕ0],

from lim
q↓1
Csmall,up(q), those with v′7 for ϕ∈ [0, π−4ϕ0] and v′′7 for ϕ∈ [0, π−2ϕ0],

from lim
q↓1
Csmall,low(q), those with v′′7 for ϕ∈ [π−2ϕ0, π−ϕ0].

3. Some special heptagons

We present three statements that can be verified by computation.

a. There are only the following five incongruent heptagons with exactly five vertices in
a plane.

   

pn1 pn2 pn3

   

pn4 pn5

From the heptagons pni (penta), pn1, pn2, pn3 are plane- and pn4, pn5 line-symmetric.
Further, pn1 and pn4 have the same angle α≈ 48.011◦, and one heptagon is obtained
from the other by reflecting a vertex and its adjacent sides on the pentagon plane. The
same is true for pn2 and pn5 with the common angle α≈63.317◦. The angle of pn3 is
α≈51.229◦. All these symmetric heptagons are large and lower, except pn2 which is
small and upper.

We add that only pl4 and lk have exactly six vertices in a plane (double vertex counted
twice); and of course, the stars have seven of them.
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b. There are only the following nine incongruent heptagons with exactly four vertices
forming a rectangle.

  

rc1 rc2 rc3 rc4

  

rc5 rc6 rc7 rc8

  

rc9

The heptagons rci (rectangle) are plane-symmetric and appear always pairwise in the
upper and lower form; an exception is only the asymmetric rc9.

In the first row, we have rc1 and rc2 with angleα=60◦ (they are the same as pl3 and pl5
in [2]), and rc3 and rc4 with α=90◦.

The heptagons of the second row can be obtained without calculation as follows: For
rc5 and rc6, consider a regular pentagon and divide it along a diagonal q into two parts.
Then, insert two new sides of length 1 between the parts in such a way that they are
parallel. The heptagons rc5 and rc6 are now achieved by rotating both parts around q,
where their common angle is α= 108◦ (q= Φ). The heptagons rc7 and rc8 are given
by α=36◦ (q=1/Φ), and they can be obtained in a similar way, by starting with a pen-
tagram and inserting new sides such that they are crossed. The four heptagons may be
called golden heptagons.

Finally, the angle of the asymmetric rc9 is α≈49.354◦. Note that one side pierces the
rectangle. Regarding the two possible connected components, we have:

rc9∈ Clarge,up(q) with q≈0.835.
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c. There are only the following three incongruent heptagons with three consecutive
sides as edges that determine a cube.

   

cb1 cb2 cb3

The asymmetric heptagons cbi (cube) can be characterized with respect to the cube as
follows: In cb1 and cb2 a fourth side lies on the surface but only in cb1 a fifth side par-
tially inside the cube, and in cb3 no fourth side lies on the surface.

These heptagons belong to the two connected components with angle α= 90◦ as fol-
lows:

cb1∈ Clarge,low(q) and cb2, cb3∈ Clarge,up(q) with q=
√

2.

4. z-heptagons

By defintion, a z-heptagon contains a z-shape, i.e., three consecutive sides in a plane as
being two opposite sides and a diagonal of a parallelogram. Without loss of generality,
we can assume that the z-shape is given by the vertex sequence v1v2v3v4. And to avoid
congruent z-heptagons with different diagonal lengths v2v6 (related to each other by the
vertex permutation (v1v4)(v2v3)(v5v7)(v6)), we additionally require that v2v6 ≤ v3v6.
Then, Figure 1 shows the curve resulting from the diagonal pairs (q, v2v6) of all z-hep-
tagons. Each point of this curve represents exactly one z-heptagon, except the point at
q=1 that shows two of them. It follows that z-heptagons only exist for

q∈ [q̃1, q̃3] with q̃1≈ 0.7690 (α̃1≈ 45.22◦) and q̃3≈ 1.195 (α̃3≈ 73.41◦).

Furthermore, for a fixed q, the number of incongruent z-heptagons is given as follows:
one for q ∈ [q̃1, 1[∪{q̃3}, two for q ∈ {1}∪ ]q̃2, q̃3[, and three for q ∈ ]1, q̃2], where
q̃2≈1.062 (α̃3≈ 64.14◦); see the corresponding red colored boundaries in Figure 1.

In Figure 1, we also show a series of z-heptagons zhi (each with drawn diagonal v2v6).
Note that zh3 = pl3 and zh4 = lk (see [2]). Further, there are exactly two incongruent
z-heptagons with two double z-shapes, namely zh3 and zh10.

It should be mentioned that we only know the exact solutions in a few single cases: q̃1
and q̃2 are the absolute values of the real solutions of

11x6+28x5−5x4−32x3+24x2+16x−20 = 0,

and zh10 is detemined by q̂ =
√

1
2 + 7

2
√
17
≈ 1.161 (α≈ 71.00◦).
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zh 1 (line-sym.)

~q1 ~q2
 ^ q
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zh  2

Furthermore:

zh   6

zh   8

zh   4

zh   3 (plane-sym.) zh  5 (line-sym.) zh  11

zh   9 zh  10 (line-sym.)

zh   6

zh   8

zh   3
zh   4

~q3

 q

1

zh  7

0

0.2

0.4

0.6

Figure 1: z-heptagons represented by diagonal pairs (q, v2v6) and examples.
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There is a continous transformation of z-heptagons that traverse every zhi of Figure 1
in the order of (zh1, zh2, zh3, zh7, zh9, zh11, zh10, zh8, zh6, zh4, zh5). And for each
q 6=1, they belong to a connected component as follows:

from zh1 until zh4 to Clarge,up(q), from zh4 until zh5 to Csmall,up(q).

If the transformation is continued beyond zh5, as shown in Figure 2, the zhi appear in
reverse order (selected zhi are indicated). Thus, one finally obtains the original hep-
tagon zh1, so that the transformation process is closed. Note that q varies piecewise
linearly.1

v1v4

v1v5 v4v7

v2v6 v3v6

0

v2v5 v3v7

There is a continous transformation of z-heptagons that traverse every zhi of Figure 1
in the order zh1 zh2 zh3 zh7 zh9 zh11 zh10 zh8 zh6 zh4 zh5. And for each q 6=1, they
belong to a connection component as follows:

from zh1 until zh4 to Clarge,up(q), from zh4 until zh5 to Csmall,up(q).

If the transformation is continued beyond zh5, as shown in Figure 2, the zhi appear in
reverse order (selected zhi are indicated). Thus, one finally obtains the original hep-
tagon zh1, so that the transformation process is closed. Note that q varies piecewise
linearly.2

v1v4

v1v5 v4v7
v3v7

v2v6

v2v5

v3v6

1

0
zh1 zh3 zh11zh10 zh4 zh5 zh4 zh10zh11 zh3 zh1

Figure 2: Continuous transformation within the z-heptagons.

Since the set of all z-heptagons contains the plane-symmetric zh3, it is also possible to
obtain by continuous transformations the mirror-inverted z-heptagons (Lemma in [1]).
Thus, we have: The set of all z-heptagons is connected.

5. Extreme length of main diagonals in heptagons
p

2

Let x be the length of the main diagonal involved in four consecutive
vertices of a heptagon. ...

2A corresponding animation can be found under the menu ”Animations & Figures”.
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q
1

zh1 zh3 zh11zh10 zh4 zh5 zh4 zh10zh11 zh3 zh1

Figure 2: Continuous transformation within the z-heptagons.

Since the set of all z-heptagons contains the plane-symmetric zh3, it is also possible to
obtain by continuous transformations the mirror-inverted z-heptagons (Lemma in [2]).
Thus, we have: The set of all z-heptagons is connected.

5. Extreme length of main diagonals in heptagons with a fixed q

Four consecutive vertices of a heptagon form a tetrahedron, where one edge is a main
diagonal whose length is denoted by d. We first consider this tetrahedron independently
of the heptagon and assume that q is fixed. Then, as illustrated in the following figure,
d monotonically increases from a minimum length m to a maximum M by varying ϕ
from 0◦ to 180◦ (ϕ being the dihedral angle at the edge opposite to that of length d).

1A corresponding animation can be found under the menu ”Animations & Figures”.
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This immediatly follows from the following figures by using the Ptolemy’s theorem and
the parallelogram law, respectively:
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In the boundary cases we obtain an isosceles trapezoid and a parallelogram, and from
the Ptolemy’s theorem and the parallelogram law it immediately follows:

m = |q2 − 1|, M =
√

2q2 + 1.

When do these boundary cases appear in heptagons? As can easily be seen, the answer
to this question is as follows:

- For a fixed q, the smallest main diagonal lengthm is assumed in all plane-symmetric
heptagons.

- For a fixed q, the largest main diagonal length M is assumed in all z-heptagons.

Plane-symmetric heptagons exist for any possible q, i.e., for q from [q1, q3] (see [2]),
whereas z-heptagons occur only for q from the subinterval [q̃1, q̃3]. Therefore, for q
from [q1, q3] \ [q̃1, q̃3], the largest main diagonal must be smaller than M ; but a charac-
terization of these cases remains open.
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