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We use the notations and concepts from article <<Regular spatial hexagons>> (see also
Elem. Math.). A regular spatial hexagon (nonplanar equilateral and equiangular 6-gon)
with side lengths 1 is briefly called a hexagon. Its vertices are sequentially denoted by
v1, v2, . . . , v6, the six diagonals of equal length between a vertex and the next but one
by q, and the three diagonals between opposite vertices by x, y, and z, where x= v1v4,
y= v2v5, and z= v3v6.

We also refer to the derived symmetry classification and distinguish rigid hexagons
with crowns and stars from flexible hexagons with boats, crosses, twists, and lows. The
following table shows representatives of the six symmetry classes; in each case, the el-
ement of the prime symmetry (exchanging opposite vertices) and the diagonals x, y,
and z are indicated in red color and the whole symmetry group is specified by the corre-
sponding Schoenflies symbol (group order in brackets):

	

	
	

	

	
	

	
	

	

	

	

	

	
	

crown D3d (12) star D3h (12) low C2 (2)

boat C2v (4) cross C2h (4) twist D2 (4)
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In <<Regular spatial hexagons>> relations and ranges of the diagonals q, x, y, and z have
been determined with the help of vertex coordinates. Here, they are calculated without
coordinates, based on results of a relatively young branch of geometry that is called
distance geometry.

An early approach to distance geometry can be found by Cayley [3] in his very first
paper from 1841, wherein he states conditions for distances of five points in space, four
points in a plane, and three points on a line. More than 80 years later, in the late 1920s,
general and systematic studies were carried out by Menger [5] and subsequently pur-
sued by Blumenthal [2]. Around 1980, distance geometry became important for stere-
ochemistry [4] and in connection with matroid theory [1]. Other applications concern,
for instance, sensor networks, statics, robotics, and astronomy. A team of authors pub-
lished an overview about theory, methods, and applications of distance geometry [6].

Results of distance geometry applied to hexagons

When applying the results of distance geometry to hexagons, we essentially refer to the
following symmetric matrix:

D = (dij) =


0 1 q2 x2 q2 1
1 0 1 q2 y2 q2

q2 1 0 1 q2 z2

x2 q2 1 0 1 q2

q2 y2 q2 1 0 1
1 q2 z2 q2 1 0

, (1)

where q, x, y, and z are any positive lengths.

If these lengths are the diagonals of a hexagon with vertices v1, v2, . . . , v6, then the
elements dij of D are the squared distances between the vertices, i.e., dij = vivj

2

(1≤ i<j ≤6), and D is said to be a distance matrix1 of the hexagon.

Distance geometry now provides necessary and sufficient conditions that D must be
met in order to become a distance matrix. These conditions are based on a special
kind of determinants as follows: if Dk is a principal submatrix2 of D with k rows and
columns (3≤k≤6), we define:

CM(Dk) := det


1

Dk

...
1

1 . . . 1 0

, (2)

which is called a Cayley-Menger determinant.

1In contrast to this definition and especially in a context different from distance geometry, the entries of a
distance matrix are usually defined as distances and not their squares.

2A principal submatrix Dk of D is obtained by removing (6−k) rows and columns from D which are
symmetric to the main diagonal; evidently it is D6 = D.
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According to a fundamental theorem of distance geometry, it holds the following:

Theorem 1. The matrix D is a distance matrix if and only if there exist principal sub-
matrices D4 and D3 of D, where D3 is a submatrix of D4, such that the following con-
ditions are satisfied:

(i) CM(D4) > 0 and CM(D3) < 0,
(ii) CM(D5) = CM(D′5) = 0, where D5 and D′5 are the two different principal

submatrices of D containing D4 as a submatrix,
(iii) CM(D) = 0.

Consider the hexagon with vertices v1, v2, . . . , v6 determined by the distance matrix D.
Any principal submatrix Dk of D, which is given by the set {i1 . . . , ik} of row indices
that remain by removing rows (and columns) from D, determines a corresponding
simplex with vertices vi1 . . . , vik . It can be shown that the Cayley-Menger determinant
CM(Dk) has a geometrical significance: it is proportional to the square of the (k−1)-
dimensional volume of this simplex.

The idea behind Theorem 1 can be expressed as follows: condition (i) ensures the ex-
istence of a corresponding nondegenerate tetrahedron, where CM(D4) = 288V 2 and
CM(D3)=−16A2 with V being the volume of the tetrahedron and A the area of the
corresponding face triangle; conditions (ii) and (iii) state that the 4- and 5-dimensional
simplices containing this tetrahedron must be degenerate, i.e., they have volume 0.

Computation of the diagonals

From the quite extensive computation, we primarily present the results; the verification
of detailed calculations requires the use of a computer algebra system. We now specify
the possible distance matrices D from (1) by an (in)equality system without referring
to an existential quantifier as it appears in Theorem 1. To do so, it is appropriate to con-
sider a modified version of (i), namely

(i∗) CM(D4) ≥ 0 and CM(D3) < 0. (3)

If CM(D4) = 0, the corresponding tetrahedron would be degenerate. With condition
(i∗) and (ii), (iii) from Theorem 1, as well as an additional condition (iv), we have:

Theorem 2. LetL be the set of all quadruples (q, x, y, z) that satisfy the following con-
ditions:

(i∗), (ii) and (iii) with D4 given by the set {1, 2, 3, 4} and D3 by {1, 2, 3},
and
(iv) CM(D′4)>0 if CM(D4)=0 with D′4 given by {1, 2, 3, 5}.

Then D is a distance matrix if and only if (q, x, y, z)∈L.

Proof. By Theorem 1, the quadruples ofLwith CM(D4)>0 evidently yield a distance
matrix. A quadruple beyond L cannot lead to a distance matrix because CM(D4)< 0
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implies that no corresponding tetrahedron exists (see also [7]). So we still have to ex-
amine the quadrupels of L with CM(D4) = 0. Again by Theorem 1, but now based
on D′4 and D3, there is obtained a distance matrix if CM(D′4)> 0. It only remains to
check that CM(D′′5) = 0 with D′′5 given by {1, 2, 3, 5, 6}; this is done by calculation.
In order to complete the proof, we can exclude quadruples of L with CM(D′4)<0, but
also those with CM(D4)=CM(D′4)=0. In fact, again by calculation, it is shown that
the latter result in the planar hexagon with q=

√
3 and x=y=z=2.

The set L therefore comprises exactly all quadruples belonging to an existing hexagon,
and we call them diagonal quadruples. These will now be determined.

Evaluating the inequalities from (i∗) of Theorem 2, it follows

q < 2, |1− q2| ≤ x ≤
√
1 + 2q2. (4)

Using D5 given by {1, 2, 3, 4, 5} and D′5 by {1, 2, 3, 4, 6}, we obtain from (ii) two bi-
quadratic equations in y and z, respectively. Calculation leads to the solutions

y1 = z1 =

√
f + g

h
, y2 = z2 =

√
f − g
h

with (5)

f = −(q2 + 1)x4 + 2(q4 + q2 + 1)x2 + (q2 − 1)3,

g = 2q
√(

x4 − (q2 + 2)x2 + (q2 − 1)2
)(
x2 − 2q2 − 1

)(
x2 − (q2 − 1)2

)
,

h = (x+ q + 1)(x+ q − 1)(x− q + 1)(−x+ q + 1).3

Which values of x from (4) give positive radicands in (5)? By taking into account con-
dition (iv) from Theorem 2, we get a smaller range of q and for q>1 of x:

q <
√
3, m1 ≤ x ≤

{
M1 for q ≤ 1
M2 for q > 1

with (6)

m1 = |1− q2|, M1 =
√

1 + 2q2, M2 = 1
2

(√
3 q +

√
4− q2

)
.

For q=1, however, y2 and z2 become zero and must therefore be excluded.

It remains to consider condition (iii). By plugging (5) into (iii), we obtain four subsets
of L as follows:

Lij := {(q, x, y, z) | satisfying (iii) with y = yi, z = zj} for i, j∈{1, 2}.

Calculation shows: L11 andL22 comprise the diagonal quadruples of the rigid hexagons,
or more precisely, L11\L22 gives the crowns and L22\L11 the stars. L12 and L21 result
from the fact that (iii) becomes generally valid in q and x, and the diagonal quadruples
of L12 ∪ L21 determine the flexible hexagons, i.e., the lows, boats, crosses, and twists.

3By the way, h = −CM(D3) with D3 being the principal submatrix given by {1, 2, 4}.
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We illustrate with a set diagram:

 

L22 

 
L11 

 

crowns stars 

boats, crosses, and twists 
with x = y or x = z 

 

lows 
 

L12 ∪ L21 
 

 boats, 
 crosses, 

 and twists 
 with y = z 

 

Summarizing the results of the complete computation, we have:

Theorem 3. All hexagons are given by diagonal quadruples as follows:

rigid hexagons by
(q, x, x, x) with q<

√
3 and x =

√
1 + q2 for crowns,

(q, x, x, x) with q < 1 and x =
√

1− q2 for stars;

flexible hexagons by
(q, x, y1, z2) or (q, x, y2, z1)
with q 6=1 and x from (6), y1, z1, y2, and z2 from (5).

In lows the diagonals x, y, and z are pairwise distinct; in boats, crosses (q<1),
or twists (q > 1) two of them are equal and the third one is m1, M1, or M2,
respectively.

The following properties, already derived in <<Regular spatial hexagons>>, are now an
immediate consequence of Theorem 3:

- Rigid hexagons depend on one parameter (here q), and each of them is uniquely
determined (up to congruence) by exactly one diagonal quadruple. Flexible hexagons
depend on two parameters (here q and x), and a boat, cross, or twist is determined by
three, a low even by six distinct diagonal quadruples.

- The resulting range q<
√
3 implies that a hexagon with angle α exists if and only if

α<120◦. The special angle α=60◦ appears only in a crown.
- For a given q ( 6=1), the smallest of the diagonals x, y, and z is given by m1 in a boat,

and the largest by M1 in a cross (q<1) or M2 in a twist (q>1).
- The diagonal quadruples of hexagons with one double vertex (pentas) result from
q=1.
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Closing remarks

The coordinate-free approach with distance geometry gives the distance matrix of each
hexagon and thus the diagonals. Based on the distance matrix, it would be possible to
find the symmetry group and thus the symmetry classification without referring to geo-
metric intuition.

This has been elaborated in [8] for any finite set of points in space as follows: In a first
step, the autometry group, i.e., the group of the length-preserving point permutations
(in the context of hexagons called vertometry group), is generated by means of a can-
onization algorithm. In a second step, certain Cayley-Menger determinants are used to
identify the associated symmetries. This general procedure is then applied to cyclohex-
ane, where the skeleton is a model for all (regular spatial) hexagons with q = 2

3

√
6.
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