Angle sum of polygons in space*
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Abstract. It is examined for which angle sums a polygon in space exists.

We consider polygons in the three-dimensional Euclidean space with n generally non-
coplanar vertices (n > 3) and call them n-gons for short. An angle of an n-gon is de-
fined as the angle between adjacent sides that is smaller than or equal to 180°. Intersect-
ing sides, coinciding vertices, and even angles of 0° are permitted.

Theorem. An n-gon in Euclidean space E3 with angle sum S,, exists if and only if

o 0° for even n
_9). > >
(n—2)-180° > $, > {180°f0r odd n. M

Proof. First, we show by induction on n that the upper bound from (1) forms a neces-
sary condition for the existence of an n-gon. Let S,, = a3 + a2 + - - - + @, be the sum
of the n-gon’s consecutive angles. The base case S3 = 180° is known. Adding to the
n-gon a further vertex with angle «,, 11, as shown in Figure 1, we obtain the new vertex
angles o} and o, and the triangle angles 5 and . From (n — 2) - 180° > S,, and using
the spherical triangle inequality, it follows by the induction step that

((n+1)—2)-180° > S, + 180° = S, + B+ + ctnsy
=Sy —a1+ (a1 + B) —an + (an +7) + anp1
>8, —a1+a] —a, +al, + a1 = Sni1.
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As regards the necessary conditions of the lower bound from (1), it suffices to show that
S, > 180° for odd n. To do this, we generalize an approach often used at school to
prove that S3 = 180°: the angles «; of an n-gon are translated such that their vertices
come to lie in a common point O and, in addition, those with even index ¢ are reflected
at O. In this way, we obtain an angle fan with a common side of «; and ;41 for 1 <
< n—1, and an angle of 180° between the opposite sides of a; and av,,, as illustrated in
Figure 2 for n = 5. Hence, again based on the spherical triangle inequality, it follows
that S, > 180°.
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Figure 2

Next, we verify that (1) is sufficient for the existence of an n-gon by giving an example
for each angle sum S,,.

For even n, consider an n-gon, as shown in Figure 3 for n = 10, but without point v.
Its sides are diagonals of the lateral rectangles of a regular prism, and we choose their
common length to be 1. This n-gon, which we call a crown, has equal angles. If the
radius r of the circumscribed circle of the base area is continuously varied, the prism
degenerates in two cases: for r = 0, it becomes a line segment with .S, = 0°, and for
r = 1/(2sin Z), it results in a regular planar n-gon and thus S,, = (n —2) - 180°. The
continuity ensures that S,, assumes all values from (1) between these boundaries.

Figure 3

For odd n (n > 5), we add to a crown with n—1 vertices a further vertex v which is the
midpoint of a side, as in Figure 3 for n = 11. Since the angle at v is 180°, it follows for
each r that S,, = 5,,_1 + 180°, and thus S, again assumes all values from (1). O

Boundaries. The upper bound S,, = (n — 2) - 180° can only be reached if in the step
of the above induction proof it holds o) = 1 + 3 and o), = v, + 7, and consequently
oy < 180° and o, < 180°. The two equations imply that a corresponding n-gon is pla-
nar and the two inequalities, which in addition exclude overlapping and concavity, that
it is convex.



Concerning the lower bounds, an n-gon with even n and .S,, = 0° is obviously linear.
However, an n-gon with odd n and S,, = 180° is planar, which is due to the fact that
the associated angle fan must be planar. If in such an n-gon all «; are different from 0°,
it can be characterized by having the largest turning number ¢, given by t = (n —1)/2.
Figure 4 shows a heptagon with ¢ = 3 and thus S; = 180°, together with the star (the
great heptagram), which is the most symmetric version of the latter. An n-gon with
Sy, = 180° and one or more vanishing angles «; is obtained by limiting processes. If
n—1 angles vanish and therefore the remaining one becomes 180°, we get again a linear

n-gon.

Summarizing the main point, we have that an n-gon with a boundary angle sum S,
from (1) is planar.

Figure 4

Generalization. The Theorem holds for n-gons in any Euclidean space E¢ with d > 2.
For d > 3, the proof works in the same way as in E®. For d = 2, it remains to show that
for each non-boundary angle sum .S,, from (1) there exists a planar n-gon, which can
easily be done by means of examples.

Remark. We could not find our result elsewhere in the present general form. However,
for some classes of equilateral n-gons, it is implicitly contained in [1].
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