Angle sum of polygons in space*

Fritz Siegerist and Karl Wirth

Abstract. It is examined for which angle sums a polygon in space exists.

We consider polygons in the three-dimensional Euclidean space with n generally non-coplanar vertices ($n \geq 3$) and call them n-gons for short. An angle of an n-gon is defined as the angle between adjacent sides that is smaller than or equal to 180° . Intersecting sides, coinciding vertices, and even angles of 0° are permitted.

Theorem. An n-gon in Euclidean space E^3 with angle sum S_n exists if and only if

$$(n-2) \cdot 180^{\circ} \ge S_n \ge \begin{cases} 0^{\circ} \text{ for even } n \\ 180^{\circ} \text{ for odd } n. \end{cases}$$
 (1)

Proof. First, we show by induction on n that the upper bound from (1) forms a necessary condition for the existence of an n-gon. Let $S_n=\alpha_1+\alpha_2+\cdots+\alpha_n$ be the sum of the n-gon's consecutive angles. The base case $S_3=180^\circ$ is known. Adding to the n-gon a further vertex with angle α_{n+1} , as shown in Figure 1, we obtain the new vertex angles α_1' and α_n' and the triangle angles β and γ . From $(n-2)\cdot 180^\circ \geq S_n$ and using the spherical triangle inequality, it follows by the induction step that

$$((n+1)-2) \cdot 180^{\circ} \ge S_n + 180^{\circ} = S_n + \beta + \gamma + \alpha_{n+1}$$

= $S_n - \alpha_1 + (\alpha_1 + \beta) - \alpha_n + (\alpha_n + \gamma) + \alpha_{n+1}$
 $\ge S_n - \alpha_1 + \alpha'_1 - \alpha_n + \alpha'_n + \alpha_{n+1} = S_{n+1}.$

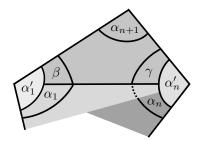


Figure 1

^{*} Published in *Elem. Math.* (accepted 2021-07-02), uploaded on this website 2021-07-13.

As regards the necessary conditions of the lower bound from (1), it suffices to show that $S_n \geq 180^\circ$ for odd n. To do this, we generalize an approach often used at school to prove that $S_3 = 180^\circ$: the angles α_i of an n-gon are translated such that their vertices come to lie in a common point O and, in addition, those with even index i are reflected at O. In this way, we obtain an $angle\ fan$ with a common side of α_i and α_{i+1} for $1 \leq i \leq n-1$, and an angle of 180° between the opposite sides of α_1 and α_n , as illustrated in Figure 2 for n=5. Hence, again based on the spherical triangle inequality, it follows that $S_n \geq 180^\circ$.

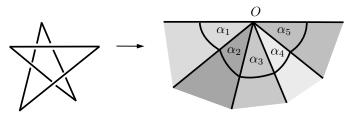


Figure 2

Next, we verify that (1) is sufficient for the existence of an n-gon by giving an example for each angle sum S_n .

For even n, consider an n-gon, as shown in Figure 3 for n=10, but without point v. Its sides are diagonals of the lateral rectangles of a regular prism, and we choose their common length to be 1. This n-gon, which we call a crown, has equal angles. If the radius r of the circumscribed circle of the base area is continuously varied, the prism degenerates in two cases: for r=0, it becomes a line segment with $S_n=0^\circ$, and for $r=1/(2\sin\frac{\pi}{n})$, it results in a regular planar n-gon and thus $S_n=(n-2)\cdot 180^\circ$. The continuity ensures that S_n assumes all values from (1) between these boundaries.

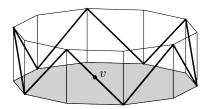


Figure 3

For odd n ($n \ge 5$), we add to a crown with n-1 vertices a further vertex v which is the midpoint of a side, as in Figure 3 for n=11. Since the angle at v is 180° , it follows for each r that $S_n = S_{n-1} + 180^{\circ}$, and thus S_n again assumes all values from (1).

Boundaries. The upper bound $S_n=(n-2)\cdot 180^\circ$ can only be reached if in the step of the above induction proof it holds $\alpha_1'=\alpha_1+\beta$ and $\alpha_n'=\alpha_n+\gamma$, and consequently $\alpha_1'\leq 180^\circ$ and $\alpha_n'\leq 180^\circ$. The two equations imply that a corresponding n-gon is planar and the two inequalities, which in addition exclude overlapping and concavity, that it is convex.

Concerning the lower bounds, an n-gon with even n and $S_n=0^\circ$ is obviously linear. However, an n-gon with odd n and $S_n=180^\circ$ is planar, which is due to the fact that the associated angle fan must be planar. If in such an n-gon all α_i are different from 0° , it can be characterized by having the largest turning number t, given by t=(n-1)/2. Figure 4 shows a heptagon with t=3 and thus $S_7=180^\circ$, together with the star (the great heptagram), which is the most symmetric version of the latter. An n-gon with $S_n=180^\circ$ and one or more vanishing angles α_i is obtained by limiting processes. If n-1 angles vanish and therefore the remaining one becomes 180° , we get again a linear n-gon.

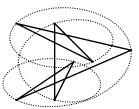


Figure 4

Summarizing the main point, we have that an n-gon with a boundary angle sum S_n from (1) is planar.

Generalization. The Theorem holds for n-gons in any Euclidean space E^d with $d \ge 2$. For d > 3, the proof works in the same way as in E^3 . For d = 2, it remains to show that for each non-boundary angle sum S_n from (1) there exists a planar n-gon, which can easily be done by means of examples.

Remark. We could not find our result elsewhere in the present general form. However, for some classes of equilateral *n*-gons, it is implicitly contained in [1].

Reference

[1] Kamiyama Y.: A filtration of the configuration space of spatial polygons, *Adv. Appl. Discrete Math.* 22 (2019), 67–74.