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Abstract. It is examined for which angle sums a polygon in space exists.

We consider polygons in the three-dimensional Euclidean space with n generally non-
coplanar vertices (n ≥ 3) and call them n-gons for short. An angle of an n-gon is de-
fined as the angle between adjacent sides that is smaller than or equal to 180◦. Intersect-
ing sides, coinciding vertices, and even angles of 0◦ are permitted.

Theorem. An n-gon in Euclidean space E3 with angle sum Sn exists if and only if

(n− 2) · 180◦ ≥ Sn ≥
{

0◦ for even n
180◦ for odd n.

(1)

Proof. First, we show by induction on n that the upper bound from (1) forms a neces-
sary condition for the existence of an n-gon. Let Sn = α1 +α2 + · · ·+αn be the sum
of the n-gon’s consecutive angles. The base case S3 = 180◦ is known. Adding to the
n-gon a further vertex with angle αn+1, as shown in Figure 1, we obtain the new vertex
angles α′1 and α′n and the triangle angles β and γ. From (n− 2) · 180◦ ≥ Sn and using
the spherical triangle inequality, it follows by the induction step that

((n+ 1)− 2) · 180◦ ≥ Sn + 180◦ = Sn + β + γ + αn+1

= Sn − α1 + (α1 + β)− αn + (αn + γ) + αn+1

≥ Sn − α1 + α′1 − αn + α′n + αn+1 = Sn+1.

↵ In the following, the three planar heptagons, as shown in figure in Figure
??, will play an important role; the corresponding secondary diagonals result
from (1).
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Figure 1
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As regards the necessary conditions of the lower bound from (1), it suffices to show that
Sn ≥ 180◦ for odd n. To do this, we generalize an approach often used at school to
prove that S3 = 180◦: the angles αi of an n-gon are translated such that their vertices
come to lie in a common point O and, in addition, those with even index i are reflected
at O. In this way, we obtain an angle fan with a common side of αi and αi+1 for 1 ≤ i
≤ n−1, and an angle of 180◦ between the opposite sides of α1 and αn, as illustrated in
Figure 2 for n = 5. Hence, again based on the spherical triangle inequality, it follows
that Sn ≥ 180◦.
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Figure 2

Next, we verify that (1) is sufficient for the existence of an n-gon by giving an example
for each angle sum Sn.

For even n, consider an n-gon, as shown in Figure 3 for n = 10, but without point v.
Its sides are diagonals of the lateral rectangles of a regular prism, and we choose their
common length to be 1. This n-gon, which we call a crown, has equal angles. If the
radius r of the circumscribed circle of the base area is continuously varied, the prism
degenerates in two cases: for r = 0, it becomes a line segment with Sn = 0◦, and for
r = 1/(2 sin π

n ), it results in a regular planar n-gon and thus Sn = (n− 2) · 180◦. The
continuity ensures that Sn assumes all values from (1) between these boundaries.
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Figure 3

For odd n (n ≥ 5), we add to a crown with n−1 vertices a further vertex v which is the
midpoint of a side, as in Figure 3 for n = 11. Since the angle at v is 180◦, it follows for
each r that Sn = Sn−1 + 180◦, and thus Sn again assumes all values from (1).

Boundaries. The upper bound Sn = (n− 2) · 180◦ can only be reached if in the step
of the above induction proof it holds α′1 = α1+β and α′n = αn+γ, and consequently
α′1 ≤ 180◦ and α′n ≤ 180◦. The two equations imply that a corresponding n-gon is pla-
nar and the two inequalities, which in addition exclude overlapping and concavity, that
it is convex.
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Concerning the lower bounds, an n-gon with even n and Sn = 0◦ is obviously linear.
However, an n-gon with odd n and Sn = 180◦ is planar, which is due to the fact that
the associated angle fan must be planar. If in such an n-gon all αi are different from 0◦,
it can be characterized by having the largest turning number t, given by t = (n− 1)/2.
Figure 4 shows a heptagon with t = 3 and thus S7 = 180◦, together with the star (the
great heptagram), which is the most symmetric version of the latter. An n-gon with
Sn = 180◦ and one or more vanishing angles αi is obtained by limiting processes. If
n−1 angles vanish and therefore the remaining one becomes 180◦, we get again a linear
n-gon.
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Figure 4

Summarizing the main point, we have that an n-gon with a boundary angle sum Sn
from (1) is planar.

Generalization. The Theorem holds for n-gons in any Euclidean space Ed with d ≥ 2.
For d > 3, the proof works in the same way as in E3. For d = 2, it remains to show that
for each non-boundary angle sum Sn from (1) there exists a planar n-gon, which can
easily be done by means of examples.

Remark. We could not find our result elsewhere in the present general form. However,
for some classes of equilateral n-gons, it is implicitly contained in [1].
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