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1 Introduction

Regular spatial heptagons, in the following referred to simply as heptagons, are under-
stood to be 7-gons in the Euclidean space E3, with equal lengths of sides and equal
angles α between adjacent sides. The side lengths are normalized to 1, and intersecting
sides as well as coinciding vertices are permitted.

For the tetrahedral bond angle α = arccos(− 1
3 ) ≈ 109.5◦, heptagons have been con-

sidered for a long time in stereochemistry, with the aim of examining seven-membered
rings of carbon atoms, as they appear, for instance, in cycloheptane. Most articles on
this subject are based on a combination of chemical and mathematical approaches. In-
vestigations on heptagons with the tetrahedral angle that refer only to mathematics can
be found in [2, 4].

What are the investigations on heptagons with any possible angle α? There is an ex-
tensive literature - even dating back to Archimedes - about the special case of the well-
known planar heptagons. However, we only know two studies on all nonplanar hep-
tagons - Cox [1] and Kamiyama [3] - both of which are concerned with the configu-
ration space. In principle, this involves the following: heptagons are flexible, i.e., they
can be continuously transformed while retaining their regularity conditions. The extent

Diese Arbeit befasst sich mit regulären räumlichen Heptagonen, d. h. mit gleich-
seitigen und gleichwinkligen Siebenecken im euklidischen Raum E3. Im Vorder-
grund steht die Frage nach den Zusammenhangskomponenten im Sinne einer steti-
gen Überführbarkeit innerhalb bestimmter Teilmengen. Dabei nimmt man wesentlich
Bezug auf die möglichen Symmetrietypen regulärer Heptagone, welche ausführlich
dargelegt werden. Die Menge aller regulären Heptagone mit einem festem Winkel
zerfällt je nach Winkelbereich in mehrere Komponenten, zu deren Charakterisierung
symmetrische Repräsentanten dienen. Schliesslich zeigt sich, dass die Menge aller re-
gulären räumlichen Heptagone zusammenhängend ist. Animationen zu dieser Arbeit
und zusätzliche Informationen zu weiteren Aspekten finden sich in [7].
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to which such transformations are possible depends on the set of considered heptagons
and leads to a partition into connected components. In both studies, but with different
approaches, the topological structure of the connected components is described for the
sets of heptagons with a fixed angle α.

The present article provides an overview of all heptagons, where the focus is put on
symmetry. We examine several subsets of heptagons and determine the associated
connected components. After presenting some preliminary properties, heptagons of the
possible kinds of symmetry are discussed in detail. Next, we consider the sets of hepta-
gons with a fixed angle α, first in the specific case of α = 60◦ and then for any other α.
As a result, we also obtain a characterization of the connected components of these sets.
This is essentially based on symmetric heptagons, in contrast to the two studies mentio-
ned above, in which symmetry is not considered at all. Finally, a combination of derived
statements reveals that the set of all heptagons is connected.

The results of this article, which are not based on theorems, are obtained from nume-
rical approximations and, thus, are not formally proven. To reproduce computations,
it needs a computer algebra system. Animations to outcomes of this paper and some
additional properties of heptagons are attached to a website [7] (originally created in
connection with [5]).

We use notations for a heptagon with consecutive vertices v1, ..., v7, as shown in Figure
1. The common length of the seven diagonals connecting a vertex with the next but one
is denoted by q, and we have

q = 2 sin
α

2
. (1)

The other seven diagonals are said to be the main diagonals (red), and in general, they
differ in length.
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Figure 1: Notations for a heptagon.

A particular role will play the three well known planar heptagons. According to Figure
2, we denote them by stari (1  i  3), although star3 is convex and not really star-
shaped. The corresponding angles ↵i and by (1) the corresponding diagonals qi are
given as follows:

↵i =
1

7
(2i � 1)180�, qi = 2 sin

↵i

2
with 1  i  3. (2)
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Figure 1: Notations for a heptagon.

An important role will play the three well known planar heptagons. According to Fig-
ure 2, we denote them by stari (1  i  3), although star3 is convex and not really star-
shaped. The corresponding angles ↵i and by (1) the secondary diagonals qi are given as
follows:

↵i =
1

7
(2i � 1)180�, qi = 2 sin

↵i

2
with 1  i  3. (2)In the following, the three planar heptagons, as shown in figure in Figure ??,

will play an important role; the corresponding secondary diagonals result from
(1).

1

star1 with �1�25.7� star2 with �1�77.1� star3 with �1�128.6�

Figure 2: The three planar heptagons.

We will also refer to the following concepts: A set of heptagons is called connected if,
within the set, each heptagon can be continuously transformed into each other. Conse-
quently, a set of heptagons is the disjoint union of maximal connected subsets, which
we call its connection components.

To conclude the introduction, we give two general results.

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. The statement is involved in the already mentioned configuration space given
in [Cox] or [Kamiyama]. It also follows from a general result about the angle sum of
polygons in sace [Siegerist/Wirth] and Theorem 3 below.
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In the following, the three planar heptagons, as shown in figure in Figure ??,

will play an important role; the corresponding secondary diagonals result from
(1).
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star1 (↵1⇡25.7�) star2 (↵2⇡77.1�) star3 (↵3⇡128.6�)

Figure 2: The three planar heptagons.

We will also refer to the following concepts: A set of heptagons is called connected
if within the set each heptagon can be continuously transformed into each other, oth-
erwise disconnected. A disconnected set consists of connection components, i.e., of
maximal connected subsets. If a disconnected set becomes connected by adjoining a
set of further heptagons, this is said to be a linkage set of the diconnected one.

We will also refer to the following concepts: A set of heptagons is called connected if,
within the set, each heptagon can be continuously transformed into each other, other-
wise disconnected. A disconnected set decomposes into connection components, i.e.,
maximal connected subsets.

For heptagon angles, we have:

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. The statement is involved in the already mentioned configuration space given
in [Cox] or [Kamiyama]. It also follows from a general result about the angle sum of
polygons [Siegerist/Wirth] and Theorem 3 below.

A heptagon symmetry must clearly be ring-preserving, i.e., it preserves the sequence
of vertices.

Theorem 2. A heptagon is asymmetric, plane- or line-symmetric.
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2 General properties

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. That the condition ↵1  ↵  ↵3 is necessary for the existence of a heptagon,
results from the following property about n-gons in space [8]: for an odd n, the sum of
the angles  180� between adjacent sides is at least 180�. That the condition is suffi-
cent, arises from Theorem 4 below.

Let ui,j be the vector pointing from vi to vj (indices larger than 7 are understood
modulo 7).

Theorem 2. In a heptagon special scalar products for 1  k  7 are given as follows:

uk,k+3 · uk+1,k+2 = 2uk,k+3 · uk+5,k+2 = q2 � 1,

(uk,k+3 + uk,k+4) · uk+2,k+5 = 0.

2

Figure 1: Notations for a heptagon.

According to Figure 2, we denote the three well-known planar heptagons by star1,
star2, and star3, although the last is convex and not really star-shaped. The correspond-
ing angles αi and, by (1), the assigned diagonals qi are given as follows:

αi = (2i− 1)
180◦

7
, qi = 2 sin

αi

2
with i ∈ {1, 2, 3}. (2)
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We use notations for a heptagon with consecutive vertices v1, ..., v7, as shown in Figure
1. The common length of the seven diagonals connecting a vertex with the next but one
is denoted by q, and we have

q = 2 sin
↵

2
. (1)

The other seven diagonals are said to be the main diagonals (red), and in general, they
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A particular role will play the three well known planar heptagons. According to Figure
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We will also refer to the following concepts: A set of heptagons is called connected
if within the set each heptagon can be continuously transformed into each other, oth-
erwise disconnected. A disconnected set consists of connection components, i.e., of
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2 General properties

Theorem 1. A heptagon with angle ↵ exists if and only if ↵1  ↵  ↵3.

Proof. That the condition ↵1  ↵  ↵3 is necessary for the existence of a heptagon,
results from the following property about n-gons in space [8]: for an odd n, the sum of
the angles  180� between adjacent sides is at least 180�. That the condition is suffi-
cent, arises from Theorem 4 below.

Let ui,j be the vector pointing from vi to vj (indices larger than 7 are understood
modulo 7).

Theorem 2. In a heptagon special scalar products for 1  k  7 are given as follows:

uk,k+3 · uk+1,k+2 = 2uk,k+3 · uk+5,k+2 = q2 � 1,
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According to Figure 2, we denote the three well-known planar heptagons by stari with
i 2 {1, 2, 3}, although star3 is convex and not really star-shaped. The corresponding
angles ↵i and, by (1), the assigned diagonals qi are given as follows:

↵i = (2i � 1)
180�

7
, qi = 2 sin

↵i

2
with 1  i  3. (2)
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What is the degree of freedom of heptagons? For the coordinates of 7 freely selectable
vertices, we have 21 degrees. Congruence invariance reduces this number by 6, nor-
malized side lengths by 7, and equal diagonal lengths q by 6. Thus, 2 degrees remain.
Taking into account an additional constraint, such as a symmetry or a fixed angle ↵,
the degree of freedom becomes 1, so that one parameter should be sufficient.

We now give two general properties of heptagons.

2

Figure 2: The three planar heptagons.

What is the degree of freedom of heptagons? For the coordinates of 7 freely selectable
vertices, we have 21 degrees. Congruence invariance reduces this number by 6, normal-
ized side lengths by 7, and equal diagonal lengths q by 6. Thus, 2 degrees remain. Tak-
ing into account an additional constraint, such as a symmetry or a fixed angle α, the de-
gree of freedom becomes 1. Thus, one parameter is sufficient to describe the sets of in-
congruent heptagons in the following sections.

We now give two general properties of heptagons.

Theorem 1. A heptagon with angle α exists if and only if α∈ [α1, α3].

Proof. That the condition α ∈ [α1, α3] is necessary for the existence of a heptagon
results from the following property about n-gons in space [6]: for an odd n, the sum of
the angles between adjacent sides is at least 180◦ and at most (n − 2)180◦. That the
condition is sufficient follows from Theorem 3 below.

Theorem 2. A heptagon is asymmetric, plane-symmetric, or line-symmetric.

Proof. Clearly, a heptagon symmetry is ring-preserving, which means that it must pre-
serve the sequence of the vertices. The symmetry group of the highest order is achieved
when all main diagonals are equal. Then it is isomorphic to the dihedral group D7, and
the induced vertex permutations are generated by cycle λ = (v1v2v3v4v5v6v7) and an
involution µ. As each λk (1 ≤ k ≤ 6) is a cycle of length seven, it can be induced only
by the rotation of a planar heptagon. Thus, we have the symmetry group of each of the
three stars, which obviously are both plane- and line-symmetric. The nonplanar hep-
tagons, therefore, are asymmetric, or their symmetry group is isomorphic to a group
generated by µ. Since µ is an involution, it can be induced only by a plane, line, or point
reflection. The last, however, can be excluded. In fact, an odd number of vertices would
coincide with the symmetry center, implying that angle α of at least one of them would
be mapped onto itself, and thus α = 180◦.

Next, we capture already mentioned concepts that in the following we subsume under
connectedness: A continuous transformation of a heptagon is given by continuously
varying the lengths of the diagonals (or the underlying vertex coordinates) while re-
taining the regularity conditions. A set of heptagons is called connected if, within the
set, for any two heptagons h and h′, there is a continuous transformation from h to h′.

3



We write h↔ h′ for the equivalence relation thus defined. Consequently, a set of hep-
tagons is subdivided into classes of maximal connected subsets, which are said to be the
connected components.

Lemma. The set S̃ of all heptagons, which are congruent to those of a connected set
S with at least one plane-symmetric heptagon, is also connected.

Proof. Let h̃1 and h̃2 be any two heptagons from S̃. Further, consider heptagons h1 and
h2 from S congruent to h̃1 and h̃2, respectively. We show that there exists a continuous
transformation h̃1 ↔ h̃2 within S̃, composed as follows: h̃1 ↔ h1 ↔ h2 ↔ h̃2.
The transformation h1 ↔ h2 can be realized within S. Therefore, it suffices to indi-
cate h1 ↔ h̃1, as this implies the existence of the reversed h̃1 ↔ h1 and of h2 ↔ h̃2.

If h1 and h̃1 are properly congruent, h1 ↔ h̃1 can be implemented with a motion,
which is a continuous transformation within S̃. If h1 and h̃1 are improperly congruent,
we consider first a continuous transformation h1 ↔ pl ↔ h∗1, where pl is a plane-
symmetric heptagon from S and h∗1 a mirror image of h1. By assumption, h1 ↔ pl
exists within S, and by reflecting each heptagon of this transformation at the symmetry
plane of pl, we obtain pl↔ h∗1 within S̃. Then, for h∗1 ↔ h̃1, a motion can be applied.

2 Plane-symmetric heptagons

Plane-symmetric heptagons allow for an exact representation. Without loss of general-
ity, we can assume that vertex v1 lies on the symmetry plane, which implies three pairs
of equal diagonal lengths: v1v4 = v1v5, v2v5 = v4v7, and v2v6 = v3v7.

Theorem 3. Define

Q+ = [q1, q3], Q
− = [−q2,−1] with q1, q2, and q3 from (2),

and for given p let

a = −p3 + p2 + 2p− 1, b =
√
p2 − p+ 1, c =

√
−p2 + p+ 3.

For each p ∈ Q+ ∪ Q− and w ∈ {1,−1}, the following vertices form a plane-sym-
metric heptagon, and (up to congruence) there are no other heptagons that are plane-
symmetric:

v1 =
(
0,

√
a (−p2 + 2p+ 1)

bc
,
3p2 + p− 3

2bc

)
,

v2,7 =
(
± p

2
, 0,

b (p+ 1)

2c

)
,

v3,6 =
(
± p2 − 1

2
, 0,

b (p2 − 2)

2c

)
,

v4,5 =
(
± 1

2
, −w

√
a (p+ 1)

c
, 0
)
.
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The diagonal length q is |p|, and the lengths of the main diagonals are given as follows:

v1v4 =
1

c

√
sgn(p)w

2a
√
a+ p+ 2

b
+ ap+ (p+ 1)2,

v2v5 =
√
p2 + p, v2v6 =

√
p3 − p+ 1, v3v6 = | p2 − 1|.

Proof. The plane-symmetric heptagons are placed in an xyz-coordinate system such
that they are symmetric with respect to the yz-plane. Then vertex v1 lies on this plane,
and without loss of generality, we can choose vertices v2, v3, v6, and v7 (forming an
isosceles trapezoid) on the xz-plane, and v4 and v5 on the xy-plane. Thus, we use the
following ansatz, which already includes v4v5 = 1:

v1 = (0, f, g), v2,7 = (±p
2
, 0, h), v3,6 = (±k, 0, l), v4,5 = (±1

2
,m, 0).

From v2v7 = q, it immediately follows that p = ±q. To obtain a compact represen-
tation, it is appropriate to use parameter p instead of q. Then the remaining regularity
conditions v1v2 = v2v3 = v3v4 = 1 and v1v3 = v2v4 = v3v5 = |p| generate a system
of equations with the unknowns f , g, h, k, l, and m. Calculation with a computer alge-
bra system results in eight solutions, consisting of four each, which lead to congruent
heptagons related by reflections on the xy-plane, the xz-plane, and the x-axis. Thus, to
describe all incongruent heptagons, it suffices to consider two solutions. We take those
where, for the arbitrarily chosen reference case q = 1.2, the coordinates of v1 become
non-negative. It turns out that these two solutions differ only in the sign ofm, which we
specify with w ∈ {1,−1}. Finally, the auxiliary variables a, b, and c simplify terms.

Considering that q1, −q2, and q3 are the zeros of a, it can be shown that Q+ ∪ Q−

is the largest range of p such that all occurring roots are real (the root appearing in m
is decisive).

The diagonal lengths are obtained from the vertices; in particular, it holds q = |p|.

The results of Theorem 3 are illustrated in Figure 3. Taking into account that q = |p|,
the two closed curves are obtained from the diagonal pairs (q, v1v4) of all plane-sym-
metric heptagons. For some selected values of q, we show the corresponding heptagons
pl1, ..., pl11, which are considered from different viewpoints to get the optimal depth
effects.

The closed curve containing star1 and star3 (blue) results from heptagons with p ∈
Q+, and the curve containing star2 (red) from those with p ∈ Q−; we speak of large
and small heptagons, respectively. Both intersection points of the two curves represent
a large and a small heptagon with equal diagonal lengths v1v4 but different v2v5.

Within both closed curves, the solid segments are given by heptagons with w = 1,
and the dashed ones by those with w = −1; they represent what we call upper and
lower heptagons, respectively. The diagonal length v1v4 of an upper heptagon is always
larger than or equal to that of a lower heptagon (equal in the case of the stars and pl4,
which are of both types). Note that for the appropriate conformers of cycloheptane
(q = 2

3

√
6), an upper heptagon is called a chair and a lower a boat.
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Figure 3: Plane-symmetric heptagons represented by diagonal pairs (q, v1v4), with exam-
ples of some selected values of q.
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Remarks. a. Of course, the described heptagons are incongruent, except in the bound-
ary cases with p ∈ {q1,−1,−q2, q3}, where the valuesw ∈ {1,−1} give the same hep-
tagon.
b. For a fixed q, we have the following number of incongruent plane-symmetric hep-
tagons: 1 for q = q1 or q = q3;

2 for q ∈ ]q1, 1[ or q ∈ ]q2, q3[;
3 for q = 1or q = q2
4 for q ∈ ]1, q2[.

(3)

c. The plane-symmetric heptagons with q = 1 have double vertices, namely one in pl3
and pl5 and three in pl4. Furthermore, pl4 shows an additional plane and line symmetry,
but both of which, however, are not ring-preserving.
d. In a nonplanar plane-symmetric heptagon with q 6= 1, there is one intersection point
of the sides if the heptagon is small, and two (in one special case even four) if q < 1.

The vertex coordinates of the heptagons from Theorem 3 are continuous in p, and for a
fixed q, large and small heptagons differ in at least one of the diagonal lengths v1v4 and
v2v5. From this and the lemma, we obtain the following.

Connectedness 1. The set of all plane-symmetric heptagons has two connected com-
ponents, one containing large heptagons and the other small heptagons.

3 Line-symmetric heptagons

In searching for the vertex coordinates of all line-symmetric heptagons, we obtain a
system of equations that we assume no longer allows solutions with radicals. There-
fore, we present the results based on numerical approximations; v1 is presumed to be on
the symmetry axis.

The results are shown in Figure 4 analogically to the plane-symmetric case. The pairs
(q, v1v4), each uniquely representing a line-symmetric heptagon, yield a single closed
curve. For the same values of q as in Figure 3, the corresponding line-symmetric hep-
tagons ln1, ..., ln11 are presented. Also analogously, we make the following definition:
the segment of the curve between ln4 and ln5 with star1 and star3 (blue) stands for
large heptagons and the remaining segment with star2 (red) for small heptagons, the
solid segments for upper heptagons and the dashed segments for lower heptagons.

Remarks. a. From Figure 4, it follows that, for a fixed q, the number of incongruent
line-symmetric heptagons is the same as in the plane-symmetric case (see (3)).
b. The heptagons ln3, ln4, and ln5 with q = 1 have two double vertices, and ln4 shows
two plane symmetries, which are not ring-preserving.

The continuity of the curve in Figure 4, the plane symmetry of the stars, and the lemma
imply the following.

Connectedness 2. The set of all line-symmetric heptagons is connected.
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Figure 4: Line-symmetric heptagons represented by diagonal pairs (q, v1v4), with exam-
ples of some selected values of q.

4 Heptagons with q = 1

First, consider heptagons with double vertices. As certain diagonals of length q coin-
cide with sides, it follows that q = 1. Heptagons with double vertices can be specified
with an exact representation.
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Theorem 4. Assume that ϕ0 = 1
2 arccos

1
3 , and for given ϕ let

a = cosϕ, b = sinϕ.

For each ϕ∈ [−2ϕ0, π − ϕ0], the following vertices form a heptagon with at least one
double vertex, and (up to congruence) there are no other heptagons with this property:

v1 = (0, 0, 0), v2 =
(1
2
,

√
3

2
, 0
)
, v3 =

(1
2
,

√
3

6
,

√
6

3

)
,

v4 = (1, 0, 0), v5 = v1, v6 =
(1
2
,−
√
3 a

2
,

√
3 b

2

)
,

v′7 =
(3a− 1

5− 3a
,
2
√
3 (1− a)
5− 3a

,
2
√
3 b

5− 3a

)
if ϕ∈ [−2ϕ0, 2ϕ0],

or v′′7 = v4 if ϕ∈ [−ϕ0, π − ϕ0].

Proof. Without loss of generality, we can choose as a double vertex v5 = v1. Because
q = 1, the vertices of the tetragon t = v1v2v3v4 form a regular tetrahedron, which is
placed in an xyz-coordinate system, as indicated. From v6v1 = v6v4 = 1, it follows
that v6 lies on a circle parallel to the yz-plane with center ( 12 , 0, 0) and radius √3/2, and
we use the angle parameter ϕ (by radian) to obtain the coordinates of v6. Finally, the
system of equations, resulting from the remaining regularity conditions v7v1 = v7v2 =
v7v6 = 1, yields the two solutions v′7 and v′′7 .

We show that the indicated intervals for ϕ are sufficient to describe all incongruent hep-
tagons with double vertices. This is done by verifying that the complementary sets with
respect to a full circle interval of length 2π give no further incongruent heptagons.

For heptagons with v′7, consider the symmetry plane P of the tetragon t passing through
the double vertex v1. The boundaries of the interval [−2ϕ0, 2ϕ0] yield plane-symmetric
heptagons, namely pl3 for ϕ = −2ϕ0 and pl5 for ϕ = 2ϕ0 (see Section 2), both with
P as the symmetry plane. Since, for each ϕ, there exists exactly one heptagon with v′7,
the extension of ϕ beyond these interval boundaries must lead to mirrored heptagons
with respect to P .

The situation is similar for heptagons with v′′7 . Let L be the symmetry axis of the
tetragon t passing through the midpoint of the double side v4v5. Here, the boundaries
of the interval [−ϕ0, π − ϕ0] result in line-symmetric heptagons, which are ln3 for
ϕ = −ϕ0 and ln5 for ϕ = π − ϕ0 (see Section 3), both with L as the symmetry axis.
Since each ϕ uniquely determines a heptagon with v′′7 , the extension to the complemen-
tary interval gives mirrored heptagons with respect to L.

For ϕ = 0, it holds that v′7 = v′′7 . Thus, we have a linkage between heptagons with
v′7 and v′′7 . Figure 5 shows the corresponding (asymmetric) heptagon, which is charac-
terized by the fact that four points (v1, v2, v4, and v6) form a rhombus. We speak of a
linkage heptagon and denote it by lk.
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4 Heptagons with a given q

First we consider the special case q = 1, which permits an exact description.

Theorem 4. Suppose that
a = cos t, b = sin t.

Then coordinates of the vertices of all heptagons with q = 1 are given by

v1 = (0, 0, 0), v2 =
⇣1

2
,

p
3

2
, 0
⌘
, v3 =

⇣1

2
,

p
3

6
,

p
6

3

⌘
, v4 = (1, 0, 0),

v5 = v1, v6 =
⇣1

2
,�

p
3 a

2
,

p
3 b

2

⌘
,

v07 =
⇣3a � 1

5 � 3a
,
2
p

3 (1 � a)

5 � 3a
,

2
p

3 b

5 � 3a

⌘
with �2t0  t  2t0, and

v007 = v4 with �t0  t  ⇡ � t0.

Proof. A heptagon with q = 1 has at least one double vertex. This result has been
stated in [1], based on numerical approximations, and we have confirmed it by a cum-
bersome analytical proof.

Since v5 = v1, the vertices v1, v2, v3 and v4 must form a regular tetrahedron with sides
1, which can be placed in a xyz-coordinate system as indicated. From v6v1 = v6v4 =
1 it follows that v6 lies on a circle parallel to the yz-plane, with center ( 1

2 , 0, 0) and
radius

p
3/2. Finally, v07 and v007 are obtained by solving the equality system resulting

from v7v1 = v7v2 = v7v6 = 1. The parameter t has been restricted in order to get
incongruent heptagons.

Remark. Theorem 4 gives the symmetric heptagons with q = 1 of Section 2 and 3 as
follows:

if v7 = v07, then pl3 for t = �2t0, pl5 for t = 2t0, ln4 for t = ⇡ � 4t0;
if v7 = v007 , then ln3 for t = �t0, ln5 for t = ⇡ � t0, pl4 for t = ⇡ � 2t0.

For t = 0, we obtain v07 = v007 . Figure 5 shows the corresponding (chiral) heptagon,
where v1v2v4v6 forms a rhombus.

 

v 1 = v 5  

v 2  v 6 

v 3  

v 4 = v 7  

Figure 5: Heptagon with v0
7 = v00

7 .

7

Figure 5: Linkage heptagon lk.

Remarks. a. Apart from lk, all other heptagons of Theorem 4 are incongruent. This is
because two such heptagons with coinciding diagonals always coincide in v6 and in v7.
b. There exist two further symmetric heptagons with q = 1 (see Sections 2 and 3),
which are given by Theorem 4 as follows: ln4 with v′7 for ϕ = π − 4ϕ0 and pl4 with
v′′7 for ϕ = π − 2ϕ0. Note that ln4 is the only heptagon with two double vertices but
without a double side, whereas pl4 is the only one with two double sides.

Now, let us turn to all heptagons with q = 1. In [1], it is said that these heptagons must
have at least one double vertex, a statement that is based on numerical approximations,
and we confirmed it with our own investigations; however, a formal proof is still pend-
ing. Therefore, there is an interesting unsolved problem that we highlight:

Conjecture. Heptagons with q = 1 always have at least one double vertex.

Provided that this conjecture is true, Theorem 4 includes (up to congruence) all hep-
tagons with q = 1. Then the continuity of the vertex coordinates, the linkage heptagon
lk, and the lemma imply the following.

Connectedness 3. The set of all heptagons with q = 1 is connected.

We add that continuous transformations of heptagons with q = 1 lead to two other
branching possibilities besides lk, which are given by ln4 (possible switch to new dou-
ble vertex) and pl4 (possible switch to new double side). Taking into account all succes-
sively occurring branches, a complex network - whose structure is presented in the ap-
pendix of [1] - emerges.

5 Heptagons with a fixed q 6= 1

Again, we are assuming that the solutions of a system of equations for the vertex
coordinates of heptagons with a fixed q cannot be expressed in terms with radicals.
Once more, it is necessary to resort to numerical approximations, and together with the
lemma, we obtain the following.

Connectedness 4. Each connected component of the set of all nonplanar heptagons
with a fixed q 6= 1 contains (up to congruence) exactly one plane- and one line-symmet-
ric heptagon given as follows: (i) both large or both small, (ii) one upper and one lower
for q ∈ ]q1, 1[ and both upper or both lower for q ∈ ]1, q3[.
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Remark. Look at the examples in Figures 3 and 4. Each of the following pairs of
symmetric heptagons characterizes a connected component:

(pl1, ln2), (pl2, ln1) for q = 0.8;
(pl6, ln6), (pl8, ln7), (pl7, ln8), (pl9, ln9) for q = 1.15;
(pl10, ln10), (pl11, ln11) for q = 1.5.

How can heptagons with a fixed q 6= 1 be generated? Basically, a q-preserving con-
tinuous transformation is needed between the two characterizing symmetric heptagons
of the connected component under consideration. This will now be explained in more
detail for the two connected components of q = 1.5 with Figure 6.

In both cases, consider first the area on the very left (shaded). The curves restricted in
it show the varying lengths of the seven main diagonals during a continuous transfor-
mation, where one diagonal (bold red line segment) is the chosen parameter, and thus
the variable of the horizontal coordinate axis. The points of the curves on an imagined
vertical line give the diagonal lengths of a single heptagon, being line-symmetric at
the left and plane-symmetric at the right border of the area (dashed and solid lines, re-
spectively). The heptagons of this first area represent (up to congruence) the connected
component.
 

 
 

Component characterized by (pl10, ln10). 
 

 
 

Component characterized by (pl11, ln11). 
 

1.2

1.4

1.6

1.8

2.0

2.2

1.2

1.4

1.6

1.8

2.0

Figure 6: Transformation within the connection components of q = 1.5.

becomes the length of the starting heptagon. By passing a plane-symmetric heptagon
the orientation changes, and thus from two enantiomeric heptagons always one appears
in a tinted and the other in a white area. It needs therefore a second transformation run
in order to obtain a heptagon which has not only the same diagonal lengths as the
starting one but also its orientation. Animations realizing such transformations can be
found in [6].
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Figure 6: Transformation within the connected components of q = 1.5.

This transformation process can be extended as follows: the farther areas are successive
mirror images of the previous one. This leads to a continued continuous transforma-
tion, where the thought horizontal coordinate axis can be interpreted as the time axis
of an associated animation so that the entire diagram shows time-dependent diagonal
lengths. The first 14 vertical lines alternatingly represent the line- and plane-symmetric
heptagons, where in both cases each of the seven vertices comes to lie once on the sym-
metry element.
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At the very right of the diagram, each of the main diagonals becomes the length from
that of the starting heptagon at the very left. By passing a plane-symmetric heptagon,
the orientation changes, i.e., from two asymmetric heptagons that are mirror-inverted
to each other, one always appears in a shaded area and the other in a white area. This
implies that a transformation run from the left to the right changes the orientation, and
it therefore needs a second run to get the original orientation. In contrast to the case of
q = 1, this transformation process allows no branching possibilities.

We conclude by considering all heptagons. Due to Connectedness 4, each asymmetric
heptagon with q 6= 1 is connected to a plane-symmetric and to a line-symmetric hep-
tagon with the same q. According to Sections 2 and 3, each symmetric heptagon is con-
nected to one with q = 1, and together with Connectedness 3, it results in the following.

Connectedness 5. The set of all heptagons is connected.

A subsets of all heptagons with a fixed q, however, consists of the following number of
connected components (cf. (3)):

1 for q = q1, q = 1, or q = q3;
2 for q ∈ ]q1, 1[ or q ∈ ]q2, q3[;
3 for q = q2;
4 for q ∈ ]1, q2[.1
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