Regular spatial hexagons*

Fritz Siegerist and Karl Wirth

Diese Arbeit gibt einen Uberblick iiber alle reguliren riumlichen Hexagone, d. h. die
nicht-planaren Sechsecke im dreidimensionalen Raum mit gleich langen Seiten und
gleich grossen Winkeln zwischen Nachbarseiten. Basierend auf Symmetrien ergeben
sich sechs Klassen solcher Hexagone, welche elementargeometrisch auf viele Eigen-
schaften hin untersucht werden. Eine Koordinatendarstellung ermoglicht die Berech-
nung der Diagonalen, die dann ihrerseits erlauben, die Mannigfaltigkeit in spezieller
Form darzustellen. Zum Schluss werden ohne Beweis noch weitere Eigenschaften
von Hexagonen genannt. Ergiinzend finden sich unter [8] Animationen und zusitzli-
che Figuren zu verschiedenen Aspekten dieser Arbeit.

1 Introduction

Regular spatial n-gons are understood to be nonplanar n-gons in E3 that are equilateral
and equiangular, i.e., they have sides of equal length and equal angles between consecu-
tive sides. Evidently, the second property implies equal length of the diagonals between
a vertex and the next but one. As n increases, it rapidly becomes more difficult to main-
tain an overview of these n-gons.

The simplest case is that of n = 4. In Figure 1, it is easy to see that for each angle
a < 90° there exists a regular spatial quadrangle: by rotating one subtriangle of the
rhombus (left) around the diagonal of length ¢, we can obtain ¢ for the length of the
other diagonal and thus the four equal angles « (right).

Figure 1: Generation of a regular spatial quadrangle (o < 90°).
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The next case, n = 5, yields the astonishing result that no regular spatial pentagon
exists. This has been reported or proved by various authors, independent of each other
[1,2, 10, 12]. For a short and elegant proof, see [11], and for more historical details, the
reader is referred to the introduction in [9].

With n = 6, we arrive at the subject of this article: What do regular spatial hexagons
look like? The six-membered ring of cyclohexane, which has an angle o = arccos(—%)
approximately equal to 109.5°, has been examined for a long time in stereochemistry.
Detailed mathematical studies of cyclohexane, based on distance geometry, can be

found in [3, 13].

Concerning regular spatial hexagons of any possible angle «, coordinates are given in
[6]; they have been generated from the hexagon’s net (see Figure 3 below) and consist
of trigonometric terms. Moreover, aspects of symmetry are addressed in [14] and in
some chemically motivated approaches (see [4]).

In this article, we show that the set of all regular spatial hexagons can be subdivided
into six classes, the characteristic of each class being a common symmetry group of
the hexagons contained therein. Regarding this classification, and by using elementary
geometry, we examine various structural properties and calculate different determining
parameters. The hexagons are also described by coordinates, which enables the com-
putation of the diagonals. Finally, we summarize by means of a specific representation
and mention some further properties, but without underlying proofs.

It should be added that, based on different definitions of regularity, also n-gons in
higher dimensional Euclidean spaces have been the subject of investigations, with par-
ticular regard to their existence; see [5, 7, 9] and the references therein. The general re-
sults of these studies, however, have no impact on this article.

The reader is also referred to a series of animations and figures that, in addition, graph-
ically illustrate results of this paper [8].

2 Preliminaries

In the following, regular spatial hexagons are called hexagons for short. Since the prob-
lems we discuss are independent of similarity, we restrict ourselves to hexagons with
side length 1. Intersecting sides are permitted; however, unless stated otherwise, coin-
ciding vertices are not.

In a hexagon with angle «, we use concepts and notations which are shown in Figure 2.
The consecutive vertices are denoted by vy, v, ..., vg. The common length g of the six
diagonals connecting a vertex with the next but one is given by « as follows:

«
= 2sin —. 1
g =2sin g M

Apart from the (secondary) diagonals g, there are the three (main) diagonals z, y, and
z between opposite vertices. In general, they differ in length and we write x = 10y,



Yy = Va5, and z = v3vg. In the following, when referring to g, z, y, or z, we always
mean either the corresponding line segment or its length depending on the context.

Of course, the diagonals x, y, and z are interchangeable. For a given ¢, one, three, or
even six different triples (z, y, z) determine congruent hexagons depending on whether
all three, exactly two, or none of its elements are equal, respectively. Thus, a result
about diagonals z, y, and z remains true when these are accordingly permuted.

Further concepts are useful: The triangle v;v3vs of a hexagon is equilateral with side ¢
and we call it a g-triangle. Each of the attached isosceles triangles v1vovs, v3v4V5, and
V5V 1S rotated outwards around its base g into the plane of the g-triangle. The result-
ing planar figure with the new vertices U, U4, and U and angles « and @, as shown in
Figure 3 (in the plane of the paper), is said to be the net of the hexagon. Clearly, there is
a second g-triangle vov4vg With a congruent net.

Figure 2: Notations for a hexagon. Figure 3: Net of a hexagon.

By means of the net, we prove the following:

Theorem 1. A hexagon with angle « exists if and only if 0° <a <120°.

Proof. Evidently, we have 0° < a. The angle « of the hexagon at vertices vy, v3, and
vs is compared with the corresponding angle & of the net. By applying twice the in-
equality for spherical triangles, it follows that o« <&@ (for a at vy, for instance, consider
the central projections of the triangles vovsvs and vovsvg from vy onto the unit sphere
with center v1). The angle sum of the net hexagon is now 3« + 3a = 720°, and there-
fore that of the hexagon becomes smaller than 720°, which implies o« < 120°.

Conversely, if 0°< « < 120°, then the side p of the equilateral triangle U5040g of the
net is larger than ¢. Consider a rotation of each of the outer isosceles triangles v; vav3,
v304v5, and vsVgvy around its base ¢ with the same angle into the same half-space.
With an increasing rotation angle, p becomes smaller and at 90° it is %q. Hence, in be-
tween there exists a g-triangle vov4vg of a hexagon with angle «. U

From (1) and Theorem 1 it follows that a hexagon exists if and only if

0<q<V3. 2)



This range of ¢ is in the sequel always tacitly presumed. Hexagons, as generated in the
proof of Theorem 1, have a relatively high symmetry. In general, then, what are the
symmetry properties of hexagons? We answer this question in the next two sections.
(In a modified version, the method used can be applied to any finite set of points in E3;
see [13].)

3 Structure of symmetry groups

Let 7 be a permutation of the vertices vy, va, ..., vg of a hexagon that is length-
preserving, i.e., 7;0; = m(U)7T(;) (1 < i < j < 6), and ring-preserving, i.e., if v;v;
is a side, then 7(v;)m(v;) is a side as well. We refer to such a vertex permutation 7 as
a vertometry of the hexagon.

A vertometry 7 is associated with a symmetry: As is well known, an isometry in space
(length-preserving mapping of E? onto itself) is already uniquely determined by four
points in general position and their images. By definition, a hexagon is nonplanar, so
general position is valid for at least four of its vertices. Since 7 is length-preserving, it
determines such an isometry, which is the same independently of the four vertices it is
based on. This isometry is denoted by s(7), and since 7 is ring-preserving, s() will be
a symmetry of the hexagon. Clearly, s(7) maps ¢ onto ¢ and permutes z, y, and z.

The vertometries of a hexagon form a group V, called the vertometry group, which is
isomorphic to the symmetry group S; the isomorphism is given by m — s(m). Note
that the vertometry group V gives the abstract group of a hexagon. However, as will be
seen in the next section, ) can be isomorphic to different symmetry groups S (concrete

groups).

The following vertex permutations, all being ring-preserving, will be used to generate
vertometry groups (permutations are written in cycle notation):

m1 = (v1v4)(v205)(v306), T2 = (v1v4)(v203)(v506), 3)
A = (v1V2V3V4U5Vg).
Since m; maps each diagonal z, y, and z onto itself, it is length-preserving and repre-
sents a vertometry of any hexagon, and thus s(7) is always a symmetry.

In other words, every hexagon is symmetric, or more precisely:

Theorem 2. The symmetry group S of a hexagon is isomorphic to the dihedral group
D¢ (order 12), the Klein group K4, or the cyclic group Zs, depending on whether all
three, exactly two, or none of the diagonals x, y, and z are equal, respectively.

Proof. Due to the isomorphism & = V), it suffices to examine the vertometry group V.

A maximal number of vertometries is obtained if x, y, and z are arbitrarily permutable,
i.e., if x = y = 2. In this case, the vertometry group is generated by A and 75 from (3),
and it follows that V = Dg (compare with a regular planar hexagon and its symmetries
in E2, whose restrictions to the vertex set also lead to Dg).



Next, let x # y = z. Each vertometry must then preserve the diagonal z, i.e., it must
contain subcycles (v1)(vq) or (v1v4). The resulting vertometry group is generated by
71 and o from (3), and we have V = {e, 71, ma, w3} with m3 = 172 (€ is the identity).
Since all vertometries are involutions, it follows that V = K.

The remaining case, where z, y, and z are pairwise distinct, evidently yields V =
{8 , T 1} = ZQ. O

Remarks. a. The group structure of )V (and thus of S) also results from the group ho-
momorphism that assigns to each vertometry 7 the induced permutation of the diago-
nals z, y, and z. The resulting group is the symmetric permutation group S3, S, or S1,
depending again on whether all three, exactly two, or none of the diagonals z, y, and 2
are equal, respectively. In each case, the homomorphism has kernel {¢, 1 }, which im-
plies a direct product: Dg = Zo x S5, Ky = Zo X Sy, and Zo = 7oy X S7.

b. We emphasize that Zo C K4 C Dg.

4 Symmetry groups

Having established the possible structures of the symmetry groups, we examine the
particular types of contained symmetries. If a symmetry is involutional, it must be one
of three types, which we denote by names that are used in chemistry: inversion (point
reflection), 180°-rotation (line reflection), or reflection (plane reflection). In the follow-
ing, by a rotation (without specified angle) we will always mean a 180°-rotation.

Consider s(mq ) with 71 from (3), the symmetry of every hexagon, which is involutional
and thus one of the three types. We call s(m ) the prime symmetry, and it holds the fol-
lowing:

Theorem 3. The prime symmetry s(m1) of a hexagon is an inversion or reflection if all
three diagonals x, y, and z are equal; otherwise it is a rotation.

Proof. First, we show that if 2 =y =z then s(71) is an inversion or reflection. Assume
that s(mq) is a rotation. Since the cycle A from (3) of the corresponding vertometry
group V satisfies 11 = A3, the symmetry s(\) must be a 60°-rotation. But this would
imply a planar hexagon.

Conversely, we show that if s(71 ) is an inversion or reflection then =y =z. Consider
the quadrangles Ry =vyvov4v5, Ry =v2v305v6, and R3 =v3v4vgvy . If the prime sym-
metry s(7r1) is an inversion, then these quadrangles are parallelograms with sides 1 and
q. If s(my) is a reflection, they form isosceles trapezoids with lateral sides ¢ < 1 and
diagonals 1 (lateral sides 1 and diagonals ¢ would lead to contradictions). In both cases,
it follows from a congruence theorem that R; and Ry with common y, R and R3 with
common z, and R3 and R; with common z are congruent, and thus = =y = z. Further-
more, Ry, Rs, and R3 form rectangles.

Hence, if at least two of the diagonals x, y, and z are distinct, s(7r1) must be a rotation.
O



To obtain a general view of all symmetry groups S, we distinguish the three cases ac-
cording to Theorem 2. The resulting hexagons are shown in Figures 4 -7 below, to-
gether with their symmetry elements, i.e., inversion points, rotation axes, and (except in
Figure 4) reflection planes. The ranges of ¢ for which corresponding hexagons are de-
fined (indicated in parentheses in the captions of the figures) could be determined geo-
metrically, but they are also part of computations below.

Case 1. x =y=z. By Theorem 3, the prime symmetry s(71) is an inversion or reflec-
tion and it immediately follows:

1.1. If s(m1) is an inversion, we obtain a hexagon, as shown in Figure 4a. Its convex
hull forms a triangular antiprism. The symmetry group S is generated by the roto-re-
flection s() with angle 60° and the rotation s(2). We call this hexagon a crown.

A crown already appeared in the proof of Theorem 1. For the appropriate structure of
cyclohexane in chemistry, the concept of a chair is used instead of a crown.

1.2. If s(7m) is a reflection, we get a hexagon, as shown in Figure 4b. Its convex hull
forms a triangular prism. The symmetry group S is here generated by the roto-reflec-
tion s(A) with angle 120° and the rotation s(mz). This hexagon is said to be a star.

a. crown (any q). b. star (¢ < 1).

Figure 4: Hexagons withz = y = z.

Case 2. x #y=2z. By Theorem 3, the prime symmetry s(m) is a rotation. Consider
the corresponding vertometry group V = {e, 71, o, w3} with 7 and 72 from (3), and
w3 = (v1)(v4)(v2ve)(vsvs). The assigned symmetries are involutional and we have
s(m3) = s(my)s(ma).

2.1. If s(m2) is a reflection, then s(73) is also a reflection. Indeed, s(73) is orientation-
reversing and an inversion can be excluded because it has only one fixed point. The so
defined symmetry group S leads to a hexagon (with or without intersecting sides), as
shown in Figure 5. The rotation axis is the intersection line of two perpendicular reflec-
tion planes. Such a hexagon is called a boat.
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a. boat (¢ < 1). b. boat (¢ > 1).

Figure 5: Hexagons with x #£ y = z.

2.2. If s(mg) is an inversion, then s(ms) is a reflection. Again, s(73) is orientation-
reversing and no second inversion exists. The symmetry group S yields a hexagon, as
shown in Figure 6a. The rotation axis perpendicularly pierces the reflection plane in the
inversion point. This hexagon is called a cross.

2.3. If s(mo) is a rotation, then s(m3) is also a rotation. This follows because s(m3)
is orientation-preserving. Here, S determines a hexagon, as shown in Figure 6b. The
three pairwise perpendicular rotation axes intersect each other at a common point. This
hexagon is said to be a twist.

Note that the names boat and twist are used for the appropriate structures of cyclohex-
ane in chemistry.

a. cross (g < 1). b. twist (¢ > 1).

Figure 6: Other hexagons with x # y = z.

Case 3. z, y, and z are pairwise distinct. Again by Theorem 3, the prime symmetry
s(m1) is a rotation. Evidently, S defines a hexagon with one rotation axis, as shown in
Figure 7. Because of the lowest symmetry, we call this hexagon a low.



a. low (g < 1). b. low (¢ > 1).

Figure 7: Hexagons with pairwise distinct z, y, and z.

Summarizing, we have six symmetry classes:

Theorem 4. A hexagon where all three diagonals x, y, and z are equal is a crown or
star; if exactly two of them are equal, the hexagon is a boat, cross, or twist; and if they
are pairwise distinct, it is a low.

Remarks. a. The characterizing symmetry group S of each class can be indicated
by using Schoenflies symbols, which are common in chemistry: crown Dasq, star Day,,
boat Cs,, cross Coy, twist Do, and low Cs.

b. The lows and twists are chiral, i.e., each of them cannot be brought to coincide with
its mirror image by a motion (no corresponding orientation-preserving isometry exists).
All the other hexagons are achiral.

The crowns and stars are uniquely determined (up to congruence) by the parameter q.
Indeed, for a fixed ¢ (fixed angle «), the convex hull of a crown or star is a convex
polyhedron with rigid boundary polygons, and Cauchy’s rigidity theorem implies that
it is not continuously deformable. For that reason, crowns and stars are said to be rigid
hexagons.

The set of the boats, crosses, twists, and lows is determined by two parameters, as
for instance ¢ and x. This follows because the prime symmetry is a rotation with an
axis being perpendicular to the diagonals z, y, and z: Initially, we have 7 degrees of
freedom, namely 1 for z = w10y, 3 for the vertex vo, and 3 for vs. Again taking into
account the prime symmetry, there are the 5 constraints 105 = U203 = v3v4 = 1 and
V103 = VU4 = U3V, which leave the parameters ¢ and z. And, as will be seen below,
for a fixed ¢, these hexagons depend on x and are continuously deformable. Therefore,
boats, crosses, twists, and lows are called flexible hexagons.

At this point, we make a short excursion to hexagons with coinciding vertices: Since
q >0, coinciding vertices can only occur if at least one of the diagonals x, y, or z equals
0. This requires that every triangle of consecutive vertices be equilateral or, equiva-
lently, that ¢ = 1. Furthermore, it follows that coinciding vertices are always double ver-
tices.

Consider the Figures 4 -7: The symmetry class of crowns obviously contains a hexagon
with ¢=1. As regards the other classes, ¢ =1 stands for limiting cases with at least one



double vertex. For ¢ — 1 one obtains two planar figures, from the stars an equilateral tri-
angle with side 1 (three double vertices) and from the crosses and twists a rhombus with
side 1 and a diagonal 1 (two double vertices). The boats result in what we call the penta-
boat (Figure 8a). From the lows we generally get penta-lows (Figure 8b) and by special
limiting processes again the penta-boat or thombus. Note that all these limiting cases
also follow from the formulas for the diagonals z, y, and z in Theorems 8, 12, and 14
below. Additionally, there exist tetras (Figure 8c); however, these are not limiting cases
of other hexagons.

It is easily seen that, apart from the hexagons in Figure 8, further (regular spatial) hexa-
gons with double vertices do not exist. Of course, the penta-boat and the boats have the
same symmetry group, as well as the penta-lows and the lows. The symmetry group of
tetras is the same as that of boats, but s(7 ) is a reflection whereas in boats it is a rota-
tion.

a. the penta-boat (y = 2). b. penta-low. c. tetra.

Figure 8: Hexagons with double vertices (¢ = 1).

5 Some properties

We return to hexagons without double vertices. In the following, contained tetrahedra
of a hexagon are understood to be those with hexagon vertices. The first theorem ex-
presses that the lows are in some way general hexagons:

Theorem 5. A hexagon is a low if and only if none of the contained tetrahedra are
degenerate.

Proof. We show that a contained degenerate tetrahedron would lead to symmetries in
addition to those of a low. Without loss of generality, it suffices to examine a tetrahe-
dron with four, with three, and with two consecutive vertices: 17 = v v9v3V4, 1o =
V10V3V4V5, and T3 = V2V3V5V¢.

Assume that 77 is degenerate. Then, from the prime symmetry (a rotation) it follows
that 7} and TY = v4vsvevy are congruent quadrangles, either isosceles trapezoids with
the common base x or parallelograms with the common diagonal x. Both imply a sym-
metry plane containing x.



Assume that 75 is degenerate. Again, as a consequence of the prime symmetry, we have
congruent quadrangles 75 and T3 = v4vgv1v2, Which here are Kites with the common
diagonal z. This implies a further symmetry axis containing x.

A degenerate T3 is a parallelogram with diagonals y and z or an isosceles trapezoid
with bases y and z. Consider the mid-perpendicular planes of vovg and vsvs. The ver-
tices v and vy must lie on both planes. In the case of the parallelogram, the planes are
parallel and must therefore coincide and we would have a symmetry plane. In the case
of the isosceles trapezoid, the planes must coincide again; otherwise it is v103 = V105
and thus ¢=1. Once more, we would have a symmetry plane, provided that the lateral
sides are q (in a trapezoid with diagonals g coinciding planes are impossible).

Conversely, it is seen from Figures 4-6 that the symmetry properties of hexagons dif-
ferent from lows lead to contained degenerate tetrahedra. O

The next theorem confirms what is to be expected:

Theorem 6. A hexagon has intersecting sides if and only if it is a star, a boat with
q<1, oracross.

Proof. Intersecting sides result in a degenerate contained tetrahedron. Hence, by The-
orem 5, lows with intersecting sides can be excluded. This also applies to twists, which
can be seen as follows: For intersecting sides it is necessary that three consecutive sides
or two opposite sides lie in a plane. It is easy to check that both are impossible; just take
into account that the triangles v1v9vg and v4vsv3 in Figure 6b lie in two different
planes, which intersect in the symmetry axis containing x. The rest of the proof follows
by inspecting the remaining hexagons in Figures 4, 5, and 6a. O

The hexagons different from lows and twists contain rectangles, which are involved in
the following:

Theorem 7. In a crown (with q # 1) and boat or in a star and cross, consider one of the
two vertices that do not belong to a contained rectangle. If this vertex and its adjacent
sides are reflected across the rectangle plane, the crown becomes a boat and the star a
cross, and conversely.

Proof. We consider the tinted rectangles in Figure 9. Let v} be the point obtained by
reflecting v; at the rectangle plane. Since a reflection is length-preserving, it is clear by
inspection that the vertices v1, vs, ..., vg form a crown exactly if v}, vs, ..., vg form a
boat, and analogously for a star and a cross. O

Remark. For ¢=1, we have a corresponding relation between the crown and the penta-
boat. The sides of both hexagons are edges of the same octahedron.

10
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a. crown and boat. b. star and cross.

Figure 9: Related hexagons.

Next, we look at the diagonals of the hexagons just discussed:

Theorem 8. The diagonals of hexagons different from twists and lows with y = z are
given by

crowns: any q,r =Yy =z= m; @)
stars: q<1,x:y:zzﬂ; )
boats:  q# 1 e=[1-¢| y=2= 1+ ©6)

crosses: q<1l,x=+/1+2¢%, y=2=+/1—¢> @)

Proof. The ranges of g are evident for crowns (already used in the proof of Theorem 1)
and for stars. Theorem 7 implies that these ranges accordingly apply to boats (for g# 1)
and to crosses. The diagonals z, y, and z are directly given by the Pythagorean theorem
with the exception of z for boats and crosses. For these, we must examine the quadran-
gle vyvavsvy, which is a trapezoid in boats (Figure 5) and a parallelogram in crosses
(Figure 6a), so that x can be calculated by using Ptolemy’s theorem and the parallelo-
gram law, respectively. O

From now on, we primarily focus on flexible hexagons. Further, in the following the
concept of tetrahedron will also include degenerate cases.

Theorem 9. In a flexible hexagon, let T and T' be the two contained congruent tetra-
hedra determined by consecutive hexagon’s vertices and a common edge d, which is a
diagonal x, v, or z. Then T is mapped onto T by a rotation with axis containing d and
angle p where

(d>—1)*+(¢*—1)° -1

(A1 a? - D(d—q? 1) ®

cosp =

Proof. Without loss of generality, we can consider d = x and thus T' = vy v9v3v4 and
T’ = v1v6U5v4, as shown in Figure 10. The composition of the rotational symmetry of
T (axis through the midpoints of x and vovs) and the prime symmetry (also a rotation)
leaves v and vy fixed and maps vs — vg and vs — vs. Thus, this composition must be

11



the stated rotation. Formula (8) is obtained by calculating the dihedral angle ¢ at edge x
of the tetrahedron 1™ = v1v2v456. O

Remark. The rotation angle ¢ can be limited to 60° < ¢ < 180°. The lower bound
follows because vov4vg is a g-triangle with angle 60° at v4, whereas 180° for the upper
bound is evident. With 60° we obtain the crosses and with 180° the twists.

Figure 10: Congruent tetrahedra in a flexible hexagon related by a rotation.

Theorem 9 helps prove the following:

Theorem 10. A hexagon has a circumscribed sphere if and only if it is a rigid hexagon
or a boat.

Proof. The rigid hexagons obviously have a circumscribed sphere. It remains to show
that a flexible hexagon with a circumscribed sphere must be a boat: For at least two
diagonals d the tetrahedra T' and 7", as considered in Theorem 9, are nondegenerate;
otherwise the hexagon would be planar. Without loss of generality, we can assume that
this is true for d = y and for d = 2. Let T and T’ be the tetrahedra with common d = y.
Since the circumscribed sphere of the hexagon must coincide with those of 7" and T,
it follows from Theorem 9 that y is a diameter. Analogously, z is a diameter as well.
Hence, y and z are equal and bisect each other, so we have the rectangle of a boat (see
Figure 5). O

We complete this section with an application:

Let us consider the special boat determined by the diagonals from (6) with ¢ > 1 and
x = q. It follows that ¢ = ® (golden ratio) and thus «« = 108°. Further, consider the ro-
tation according to Theorem 9 with d = z and angle ¢ = 144° (resulting from (8)).

Rotating the tetrahedron 7' = vgv;1v2v3 not only with ¢, but also with 2¢, 3¢, and 4¢
leads to 5 bundled boats, as shown in Figure 11a. It turns out that the 12 vertices form
an icosahedron with edge length 1. Simple counting yields 30 such boats with o =108°
in total.

12



Moreover, by inspection one finds that the icosahedron additionally contains 5 bundled
boats, as shown in Figure 11b, with the (exceptionally) larger side s = ®, ¢ =1 and
thus a=36°, and ¢ = 72°. The total number of these boats is again 30.

By Theorem 7, the icosahedron also contains crowns, 10 with s = 1 and 10 with s = ®.
It is easily seen that stars or further boats and crowns do not exist. And from Theorem
10 it follows that any other regular spatial hexagon, where the vertices are the corners of
the icosahedron, can be excluded as well.

Of course, the mere number of overall 80 regular spatial hexagons can also be found
with a computer program that tests all (162 ) 5!/2 (=55440) six-rings contained in an ico-
sahedron.

a.s=1and o = 108°. b. s = ® and o = 36°.

Figure 11: Five bundled boats in an icosahedron with edge length 1.

6 Vertex coordinates

We now develop a coordinate representation for the vertices of hexagons. This facili-
tates determining the diagonals of flexible hexagons and thus, in addition to Theorem
8, those of twists and lows. From calculations we only give results. (To reproduce the
computation, it is advisable to use a computer algebra system.)

The existence of flexible hexagons is guaranteed as follows:

Theorem 11. A flexible hexagon with diagonals q and x exists if and only if

My for g <1

My for ¢ > 1 with ©)

mléﬂﬁé{

my = 1—¢*, My =1+2¢%, My = 3(V3q+/4-¢?).

Proof. As a first step, we consider separately the contained tetrahedron T'=v1vov3v4.
For a fixed ¢, the edge = of T" monotonically increases from a lower bound m; to an

13



upper bound M; by varying the dihedral angle at the opposite edge vovs from 0° to
180°. Since 0° appears in a boat (see Figure 5) and 180° in a cross (see Figure 6a), we
obtain m from (6) and M, from (7).

As asecond step, we include the vertices vs and vg. Theorem 9 (with d =) implies that
it suffices to ensure the existence of the vertex vg or, equivalently, of the tetrahedron
T* =v1vav4vg. For a fixed g, the possible edges x of the separately considered T are
the result of varying again the dihedral angle at the opposite edge v2vg from 0° to 180°,
and with the Pythagorean theorem we get the lower bound ms = 1[v/3q — /4 — ¢?|
and the upper bound M>.

It is shown that my >mo, M1 < M5 for ¢ <1, and My > M> for ¢ > 1. Since the exis-
tence of the hexagon is guaranteed exactly if both tetrahedra 7" and 7™ exist, we finally
obtain the necessary and sufficient condition from (9). O

The upper bound M5 is involved in the twists:

Theorem 12. The diagonals of twists with y = z are given by

q>1, z=3(V3q¢+/4-¢), y=z=\/1+2q2—q\/3(4—q2)- (10)

Proof. Consider a twist with z # y = z (see Figure 6b). Due to the symmetry, the
tetrahedron T = v, vav4vg is degenerate (it is a kite) with 180° for the dihedral angle at
vovg. From the proof of Theorem 11 it follows that the latter is true exactly if ¢ > 1
and z = M, from (9). The diagonal y can be determined by a repeated use of the
Pythagorean theorem. Nevertheless, this derivation becomes rather cumbersome, and y
is also obtained by inserting = Ms in Theorem 14 below. O

In the following two theorems, we refer to flexible hexagons with any diagonals ¢, z, y,
and z.

Theorem 13. Let x be from (9) and  defined by (8) with d=x. Then coordinates of the
vertices v1, Vs, ..., Vg of flexible hexagons are given by

Vg4 = (:I:%m,0,0), ve3 = (£a,+b,c), an
vs.6 = (Fa, Fbcosy — csing, Fbsing + ccos ) with

21 1 1
a=12 , b:%\/ﬁf(qul)z, 6:5\/2q27x2+1.

2x

Proof. The tetrahedron T' = v v2v3v4 With x from (9) is placed in a coordinate system
such that x lies on the first coordinate axis, and the axis of the rotational symmetry of
T on the third coordinate axis. One verifies that 7302 = U303 = U304 = 1 and V103 =
vov4 = q. Using Theorem 9 with d = x and an appropriate rotation matrix, we obtain
the remaining vertices vs and vg. O

14



Remarks. a. After substituting cos ¢ and sin ¢ by means of (8), the vertex coordinates
are expressed with ¢ and x by rational operations and square roots.

b. Itis possible to limit ¢ to 60° < || < 180° (cf. Remark to Theorem 9). A positive ¢
leads then to diagonals with y > z and a negative ¢ to those with y < z.

c. For ¢ = 180°, one obtains vs ¢ = (Fa, £b, —c), which implies that the three sym-
metry axes of a twist are the axes of the chosen coordinate system.

d. Setting ¢ = 1 gives the vertices of pentas.

e. Substituting b with —b would change the orientation of chiral hexagons (lows and
twists).

Corollary 13.1. The coordinates of v1 4 and vy 3 from (11) can also be used in the case
of rigid hexagons. Then the coordinates of crowns are given with q and x from (4) and
the remaining vertices vs ¢ = (Fa, Fb, —c), and those of stars with q and x from (5)
and vs ¢ = (Fa, +b, ¢).

Proof. This follows immediately in both cases by applying the prime symmetry. [

The coordinates of flexible hexagons now allow to calculate their diagonals. It should
be added that the diagonals can also be determined without coordinates, by using dis-
tance geometry for instance; see manuscript «<Diagonals of regular spatial hexagons
determined by distance geometry>.

Theorem 14. The diagonals of flexible hexagons are given by

q#17xfrom(9),y:y/%,z:1/% with (12)

f==(@+Dz* +2A¢* + @ + D a? + (¢ - 17,

9=2q \/(:v4 —(?+2)2% + (¢? = 1)?) (22 — 2¢* — 1) (22 — (¢ — 1)?),
h=@+q+1)(@+q-1)(@—qg+1)(-z+q+1).

Proof. It remains to determine the diagonals y = U375 and z = T35 using the coordi-
nates from (11). O

Remarks. a. Of course, pairwise distinct z, y, and z are the diagonals of lows. In the
special cases where exactly two diagonals are equal, (12) gives (up to permutations) the
diagonals from (6) of boats, from (7) of crosses, or from (10) of twists.

b. For ¢=1, one obtains the pentas.

Corollary 14.1. Among the diagonals x, y, and z of all hexagons with a fixed q (# 1),
my from (9) of a boat is smallest, M, of a cross for ¢ <1 and M, of a twist for ¢ > 1
are largest.

Proof. For afixed q (# 1), the diagonals from (4) and (5) of rigid hexagons are between
the extreme values from (9) of flexible hexagons. O

15



7 Summary and further properties

The derived results are now summarized by using a specific representation. To every
hexagon (whether it has double vertices or not) with diagonals z, y, and z, we assign a
point (z, v, z) in E2, called a diagonal point. Figure 12 shows the diagonal points with
x > y > z (left) and with any z, y, and z (right), according to Theorem 14. There is
a one-to-one correspondence between the diagonal points on the left and the classes of
congruent hexagons.

Figure 12: Hexagons represented by diagonal points (z, y, z).

Let us consider in more details the diagonal points on the left of Figure 12: The points
of flexible hexagons and the pentas form an area; its interior points represent lows and
penta-lows, and the points on the contour curves (without B, C, and D) boats, crosses,
twists, and the penta-boat. The rigid hexagons lead to a line segment for both crowns
and stars. In addition, there are iso-q-curves, i.e., curves representing sets of hexagons
with a fixed ¢, especially pentas and tetras with g=1. These curves show that for each
given ¢, arigid hexagon is isolated from the continuously connected flexible hexagons.

The points A, B, C, and D represent planar figures, which are limiting cases that do
not fall under our definition of hexagons. With ¢ =1, we have two planar figures, as
already mentioned at the end of Section 4, namely in A= (0, 0, 0) a triangle with three
double vertices and in B = (\/g, 0, 0) a rhombus with two. Furthermore, with ¢=0 we
have in C' = (1, 1,1) a line segment between two triple vertices, and with ¢ = V3 in
D=(2,2,2) the well-known regular planar hexagon.

Lastly, we consider on the right of Figure 12 a diagonal point P = (x, y, z) that repre-
sents a chiral hexagon H (low or twist). Of course, P also represents the mirror image
H'’ of H. Thus, a movement of P along the iso-g-curve defines a continuous trans-
formation of H and also one of H’. Moving P around the whole iso-g-curve, the two
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transformations map H — H and H' — H' for ¢ <1, and H — H’ and H' — H for
q > 1. This can be seen as follows: On the iso-g-curve there exist six diagonal points
that represent congruent hexagons if /1 is a low and three if it is a twist (due to permu-
tations of z, y, and z). Two such successive hexagons are in both transformations the
mirror image of each other exactly if a boat or cross (both achiral) is passed in between,
which occurs six times for ¢ < 1 and three times for ¢ > 1. Moreover, for a point P rep-
resenting a chiral hexagon H with ¢ <1 (i.e., a low), the mirror image H’ can never be
reached with a continuous transformation defined by a closed path from P to P on the
area limited to ¢ < 1.

Different aspects of this summary appear in the already mentioned animations in [8].
To conclude, we give some further properties of hexagons (without double vertices),
whose proofs are left to the reader.

Property 1. Assuming that q and x determine a hexagon, consider the four congruent
triangles with common side x, as shown in Figure 13. A hexagon can be generated by
rotations of the triangles around x until U303 = V506 = 1 and Vavg = q.

This leads to a rigid hexagon if q and x satisfy (4) or (5) and the resulting congruent
tetrahedra v1vov3v4 and vV1VgUsVy are differently oriented, and it leads to a flexible
hexagon if q and x satisfy (9) and the tetrahedra are equally oriented or degenerate.

Figure 13

Property 2. Consider the net of a hexagon. By rotating all three outer triangles into the
same half-space with respect to the net-plane, one can generate the hexagons with g <1
and the crowns, i.e., the diagonals x, y, and z are then in one half-space.

For q > 1, the lows and boats are obtained by rotations such that the smallest of the
diagonals x, y, and z comes to lie in one and the other two in the other half-space. In
the case of the twists, the largest diagonal remains in the net plane and the other two
come to lie in different half-spaces.

If d denotes the involved diagonal, then the rotation angle o is given by

2d? —¢® -2

a/3(4—¢q?)

cos o =
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Property 3. For any two of the vectors v1vy, v3vg, and vsvs of a hexagon, the scalar
product is 1 —q>.

The intermediate angle between two vectors becomes obtuse for ¢ > 1 and acute for
q<1. A right angle occurs only in the crown with q=1 (and in pentas).

Property 4. The angle ¥ (0° <19 <90°) between the two different planes containing a
q-triangle of a hexagon assumes extreme values as follows:

¥ = 0° in rigid hexagons and crosses;
¥ = 90° in the boat with q = \/g in the twist with ¢ = 2 % and in one low for each
q in between.

Property 5. All six vertices of a hexagon are those of its convex hull.
Property 6. A hexagon without intersecting sides is unknotted.

In the last two properties, we refer to regular spatial hexagons with any side length s but
diagonals that are still denoted by ¢, z, y, and z. These hexagons, similar to those with
s = 1, are named s-hexagons.

Property 7. Given any positive lengths x, y, and z. If at least two of these lengths
are distinct, then they are the diagonals of exactly two incongruent s-hexagons similar
to flexible hexagons, one with q < s and another with q > s. If the three lengths are
equal, they are the diagonals of infinitely many inconguent s-hexagons similar to rigid
hexagons.

Finally, we need a special type of planar hexagons, called p-hexagons. These are de-
fined as non-regular point-symmetric planar hexagons whose diagonals between oppo-
site vertices are perpendicular to two parallel diagonals.

Property 8. Consider an s-hexagon that is similar to a flexible hexagon different from
a cross. Its orthogonal projection in direction of the axis of the prime symmetry is a
p-hexagon (see Figure 14). Conversely, each p-hexagon is the projection of such an
s-hexagon. The diagonals x, y, and z appear in the p-hexagon in true length.

The projected q-triangles are obtuse for q < s and acute for q > s, or equivalently, the
prime symmetry axis pierces the q-triangle areas exactly if ¢ > s.

In the case of an s-hexagon similar to a cross, one obtains a projection with two double
vertices.
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Figure 14
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