
Regular spatial hexagons*

Fritz Siegerist and Karl Wirth

Diese Arbeit gibt einen Überblick über alle regulären räumlichen Hexagone, d. h. die
nicht-planaren Sechsecke im dreidimensionalen Raum mit gleich langen Seiten und
gleich grossen Winkeln zwischen Nachbarseiten. Basierend auf Symmetrien ergeben
sich sechs Klassen solcher Hexagone, welche elementargeometrisch auf viele Eigen-
schaften hin untersucht werden. Eine Koordinatendarstellung ermöglicht die Berech-
nung der Diagonalen, die dann ihrerseits erlauben, die Mannigfaltigkeit in spezieller
Form darzustellen. Zum Schluss werden ohne Beweis noch weitere Eigenschaften
von Hexagonen genannt. Ergänzend finden sich unter [8] Animationen und zusätzli-
che Figuren zu verschiedenen Aspekten dieser Arbeit.

1 Introduction
Regular spatial n-gons are understood to be nonplanar n-gons in E3 that are equilateral
and equiangular, i.e., they have sides of equal length and equal angles between consecu-
tive sides. Evidently, the second property implies equal length of the diagonals between
a vertex and the next but one. As n increases, it rapidly becomes more difficult to main-
tain an overview of these n-gons.

The simplest case is that of n = 4. In Figure 1, it is easy to see that for each angle
α < 90◦ there exists a regular spatial quadrangle: by rotating one subtriangle of the
rhombus (left) around the diagonal of length q, we can obtain q for the length of the
other diagonal and thus the four equal angles α (right).
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Figure 1. Generation of a regular spatial quadrangle (↵ < 90�).
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Figure 2. Notations in a hexagon. Figure 3. Net of a hexagon.
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Figure 1: Generation of a regular spatial quadrangle (α<90◦).
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The next case, n = 5, yields the astonishing result that no regular spatial pentagon
exists. This has been reported or proved by various authors, independent of each other
[1, 2, 10, 12]. For a short and elegant proof, see [11], and for more historical details, the
reader is referred to the introduction in [9].

With n= 6, we arrive at the subject of this article: What do regular spatial hexagons
look like? The six-membered ring of cyclohexane, which has an angleα = arccos(− 1

3 )
approximately equal to 109.5◦, has been examined for a long time in stereochemistry.
Detailed mathematical studies of cyclohexane, based on distance geometry, can be
found in [3, 13].

Concerning regular spatial hexagons of any possible angle α, coordinates are given in
[6]; they have been generated from the hexagon’s net (see Figure 3 below) and consist
of trigonometric terms. Moreover, aspects of symmetry are addressed in [14] and in
some chemically motivated approaches (see [4]).

In this article, we show that the set of all regular spatial hexagons can be subdivided
into six classes, the characteristic of each class being a common symmetry group of
the hexagons contained therein. Regarding this classification, and by using elementary
geometry, we examine various structural properties and calculate different determining
parameters. The hexagons are also described by coordinates, which enables the com-
putation of the diagonals. Finally, we summarize by means of a specific representation
and mention some further properties, but without underlying proofs.

It should be added that, based on different definitions of regularity, also n-gons in
higher dimensional Euclidean spaces have been the subject of investigations, with par-
ticular regard to their existence; see [5, 7, 9] and the references therein. The general re-
sults of these studies, however, have no impact on this article.

The reader is also referred to a series of animations and figures that, in addition, graph-
ically illustrate results of this paper [8].

2 Preliminaries

In the following, regular spatial hexagons are called hexagons for short. Since the prob-
lems we discuss are independent of similarity, we restrict ourselves to hexagons with
side length 1. Intersecting sides are permitted; however, unless stated otherwise, coin-
ciding vertices are not.

In a hexagon with angle α, we use concepts and notations which are shown in Figure 2.
The consecutive vertices are denoted by v1, v2, . . . , v6. The common length q of the six
diagonals connecting a vertex with the next but one is given by α as follows:

q = 2 sin
α

2
. (1)

Apart from the (secondary) diagonals q, there are the three (main) diagonals x, y, and
z between opposite vertices. In general, they differ in length and we write x = v1v4,
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y = v2v5, and z = v3v6. In the following, when referring to q, x, y, or z, we always
mean either the corresponding line segment or its length depending on the context.

Of course, the diagonals x, y, and z are interchangeable. For a given q, one, three, or
even six different triples (x, y, z) determine congruent hexagons depending on whether
all three, exactly two, or none of its elements are equal, respectively. Thus, a result
about diagonals x, y, and z remains true when these are accordingly permuted.

Further concepts are useful: The triangle v1v3v5 of a hexagon is equilateral with side q
and we call it a q-triangle. Each of the attached isosceles triangles v1v2v3, v3v4v5, and
v5v6v1 is rotated outwards around its base q into the plane of the q-triangle. The result-
ing planar figure with the new vertices v̂2, v̂4, and v̂6 and angles α and α̂, as shown in
Figure 3 (in the plane of the paper), is said to be the net of the hexagon. Clearly, there is
a second q-triangle v2v4v6 with a congruent net.
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Figure 2: Notations for a hexagon.
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Figure 3: Net of a hexagon.

By means of the net, we prove the following:

Theorem 1. A hexagon with angle α exists if and only if 0◦<α<120◦.

Proof. Evidently, we have 0◦< α. The angle α of the hexagon at vertices v1, v3, and
v5 is compared with the corresponding angle α̂ of the net. By applying twice the in-
equality for spherical triangles, it follows that α<α̂ (for α̂ at v1, for instance, consider
the central projections of the triangles v2v3v5 and v2v5v6 from v1 onto the unit sphere
with center v1). The angle sum of the net hexagon is now 3α+ 3α̂ = 720◦, and there-
fore that of the hexagon becomes smaller than 720◦, which implies α < 120◦.

Conversely, if 0◦<α< 120◦, then the side p of the equilateral triangle v̂2v̂4v̂6 of the
net is larger than q. Consider a rotation of each of the outer isosceles triangles v1v̂2v3,
v3v̂4v5, and v5v̂6v1 around its base q with the same angle into the same half-space.
With an increasing rotation angle, p becomes smaller and at 90◦ it is 1

2q. Hence, in be-
tween there exists a q-triangle v2v4v6 of a hexagon with angle α.

From (1) and Theorem 1 it follows that a hexagon exists if and only if

0 < q <
√

3. (2)
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This range of q is in the sequel always tacitly presumed. Hexagons, as generated in the
proof of Theorem 1, have a relatively high symmetry. In general, then, what are the
symmetry properties of hexagons? We answer this question in the next two sections.
(In a modified version, the method used can be applied to any finite set of points in E3;
see [13].)

3 Structure of symmetry groups

Let π be a permutation of the vertices v1, v2, . . . , v6 of a hexagon that is length-
preserving, i.e., vivj = π(vi)π(vj) (1 ≤ i < j ≤ 6), and ring-preserving, i.e., if vivj
is a side, then π(vi)π(vj) is a side as well. We refer to such a vertex permutation π as
a vertometry of the hexagon.

A vertometry π is associated with a symmetry: As is well known, an isometry in space
(length-preserving mapping of E3 onto itself) is already uniquely determined by four
points in general position and their images. By definition, a hexagon is nonplanar, so
general position is valid for at least four of its vertices. Since π is length-preserving, it
determines such an isometry, which is the same independently of the four vertices it is
based on. This isometry is denoted by s(π), and since π is ring-preserving, s(π) will be
a symmetry of the hexagon. Clearly, s(π) maps q onto q and permutes x, y, and z.

The vertometries of a hexagon form a group V , called the vertometry group, which is
isomorphic to the symmetry group S; the isomorphism is given by π 7→ s(π). Note
that the vertometry group V gives the abstract group of a hexagon. However, as will be
seen in the next section, V can be isomorphic to different symmetry groups S (concrete
groups).

The following vertex permutations, all being ring-preserving, will be used to generate
vertometry groups (permutations are written in cycle notation):

π1 = (v1v4)(v2v5)(v3v6), π2 = (v1v4)(v2v3)(v5v6),

λ = (v1v2v3v4v5v6).
(3)

Since π1 maps each diagonal x, y, and z onto itself, it is length-preserving and repre-
sents a vertometry of any hexagon, and thus s(π1) is always a symmetry.

In other words, every hexagon is symmetric, or more precisely:

Theorem 2. The symmetry group S of a hexagon is isomorphic to the dihedral group
D6 (order 12), the Klein group K4, or the cyclic group Z2, depending on whether all
three, exactly two, or none of the diagonals x, y, and z are equal, respectively.

Proof. Due to the isomorphism S ∼= V , it suffices to examine the vertometry group V .

A maximal number of vertometries is obtained if x, y, and z are arbitrarily permutable,
i.e., if x = y = z. In this case, the vertometry group is generated by λ and π2 from (3),
and it follows that V ∼= D6 (compare with a regular planar hexagon and its symmetries
in E2, whose restrictions to the vertex set also lead to D6).

4



Next, let x 6= y = z. Each vertometry must then preserve the diagonal x, i.e., it must
contain subcycles (v1)(v4) or (v1v4). The resulting vertometry group is generated by
π1 and π2 from (3), and we have V = {ε, π1, π2, π3}with π3 = π1π2 (ε is the identity).
Since all vertometries are involutions, it follows that V ∼= K4.

The remaining case, where x, y, and z are pairwise distinct, evidently yields V =
{ε, π1} ∼= Z2.

Remarks. a. The group structure of V (and thus of S) also results from the group ho-
momorphism that assigns to each vertometry π the induced permutation of the diago-
nals x, y, and z. The resulting group is the symmetric permutation group S3, S2, or S1,
depending again on whether all three, exactly two, or none of the diagonals x, y, and z
are equal, respectively. In each case, the homomorphism has kernel {ε, π1}, which im-
plies a direct product: D6

∼= Z2×S3, K4
∼= Z2×S2, and Z2

∼= Z2×S1.
b. We emphasize that Z2 ⊂ K4 ⊂ D6.

4 Symmetry groups

Having established the possible structures of the symmetry groups, we examine the
particular types of contained symmetries. If a symmetry is involutional, it must be one
of three types, which we denote by names that are used in chemistry: inversion (point
reflection), 180◦-rotation (line reflection), or reflection (plane reflection). In the follow-
ing, by a rotation (without specified angle) we will always mean a 180◦-rotation.

Consider s(π1) with π1 from (3), the symmetry of every hexagon, which is involutional
and thus one of the three types. We call s(π1) the prime symmetry, and it holds the fol-
lowing:

Theorem 3. The prime symmetry s(π1) of a hexagon is an inversion or reflection if all
three diagonals x, y, and z are equal; otherwise it is a rotation.

Proof. First, we show that if x=y=z then s(π1) is an inversion or reflection. Assume
that s(π1) is a rotation. Since the cycle λ from (3) of the corresponding vertometry
group V satisfies π1 = λ3, the symmetry s(λ) must be a 60◦-rotation. But this would
imply a planar hexagon.

Conversely, we show that if s(π1) is an inversion or reflection then x=y=z. Consider
the quadrangles R1 =v1v2v4v5, R2 =v2v3v5v6, and R3 =v3v4v6v1. If the prime sym-
metry s(π1) is an inversion, then these quadrangles are parallelograms with sides 1 and
q. If s(π1) is a reflection, they form isosceles trapezoids with lateral sides q < 1 and
diagonals 1 (lateral sides 1 and diagonals q would lead to contradictions). In both cases,
it follows from a congruence theorem that R1 and R2 with common y, R2 and R3 with
common z, and R3 and R1 with common x are congruent, and thus x=y=z. Further-
more, R1, R2, and R3 form rectangles.

Hence, if at least two of the diagonals x, y, and z are distinct, s(π1) must be a rotation.
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To obtain a general view of all symmetry groups S, we distinguish the three cases ac-
cording to Theorem 2. The resulting hexagons are shown in Figures 4 -7 below, to-
gether with their symmetry elements, i.e., inversion points, rotation axes, and (except in
Figure 4) reflection planes. The ranges of q for which corresponding hexagons are de-
fined (indicated in parentheses in the captions of the figures) could be determined geo-
metrically, but they are also part of computations below.

Case 1. x=y=z. By Theorem 3, the prime symmetry s(π1) is an inversion or reflec-
tion and it immediately follows:

1.1. If s(π1) is an inversion, we obtain a hexagon, as shown in Figure 4a. Its convex
hull forms a triangular antiprism. The symmetry group S is generated by the roto-re-
flection s(λ) with angle 60◦ and the rotation s(π2). We call this hexagon a crown.

A crown already appeared in the proof of Theorem 1. For the appropriate structure of
cyclohexane in chemistry, the concept of a chair is used instead of a crown.

1.2. If s(π1) is a reflection, we get a hexagon, as shown in Figure 4b. Its convex hull
forms a triangular prism. The symmetry group S is here generated by the roto-reflec-
tion s(λ) with angle 120◦ and the rotation s(π2). This hexagon is said to be a star.
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a. crown (any q). b. star (q < 1).

Figure 4: Hexagons with x = y = z.

Case 2. x 6= y= z. By Theorem 3, the prime symmetry s(π1) is a rotation. Consider
the corresponding vertometry group V = {ε, π1, π2, π3} with π1 and π2 from (3), and
π3 = (v1)(v4)(v2v6)(v3v5). The assigned symmetries are involutional and we have
s(π3) = s(π1)s(π2).

2.1. If s(π2) is a reflection, then s(π3) is also a reflection. Indeed, s(π3) is orientation-
reversing and an inversion can be excluded because it has only one fixed point. The so
defined symmetry group S leads to a hexagon (with or without intersecting sides), as
shown in Figure 5. The rotation axis is the intersection line of two perpendicular reflec-
tion planes. Such a hexagon is called a boat.
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a. boat (q < 1). b. boat (q > 1).

Figure 5: Hexagons with x 6= y = z.

2.2. If s(π2) is an inversion, then s(π3) is a reflection. Again, s(π3) is orientation-
reversing and no second inversion exists. The symmetry group S yields a hexagon, as
shown in Figure 6a. The rotation axis perpendicularly pierces the reflection plane in the
inversion point. This hexagon is called a cross.

2.3. If s(π2) is a rotation, then s(π3) is also a rotation. This follows because s(π3)
is orientation-preserving. Here, S determines a hexagon, as shown in Figure 6b. The
three pairwise perpendicular rotation axes intersect each other at a common point. This
hexagon is said to be a twist.

Note that the names boat and twist are used for the appropriate structures of cyclohex-
ane in chemistry.
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a. cross (q < 1). b. twist (q > 1).

Figure 6: Other hexagons with x 6= y = z.

Case 3. x, y, and z are pairwise distinct. Again by Theorem 3, the prime symmetry
s(π1) is a rotation. Evidently, S defines a hexagon with one rotation axis, as shown in
Figure 7. Because of the lowest symmetry, we call this hexagon a low.
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a. low (q < 1). b. low (q > 1).

Figure 7: Hexagons with pairwise distinct x, y, and z.

Summarizing, we have six symmetry classes:

Theorem 4. A hexagon where all three diagonals x, y, and z are equal is a crown or
star; if exactly two of them are equal, the hexagon is a boat, cross, or twist; and if they
are pairwise distinct, it is a low.

Remarks. a. The characterizing symmetry group S of each class can be indicated
by using Schoenflies symbols, which are common in chemistry: crown D3d, star D3h,
boat C2v, cross C2h, twist D2, and low C2.
b. The lows and twists are chiral, i.e., each of them cannot be brought to coincide with
its mirror image by a motion (no corresponding orientation-preserving isometry exists).
All the other hexagons are achiral.

The crowns and stars are uniquely determined (up to congruence) by the parameter q.
Indeed, for a fixed q (fixed angle α), the convex hull of a crown or star is a convex
polyhedron with rigid boundary polygons, and Cauchy’s rigidity theorem implies that
it is not continuously deformable. For that reason, crowns and stars are said to be rigid
hexagons.

The set of the boats, crosses, twists, and lows is determined by two parameters, as
for instance q and x. This follows because the prime symmetry is a rotation with an
axis being perpendicular to the diagonals x, y, and z: Initially, we have 7 degrees of
freedom, namely 1 for x = v1v4, 3 for the vertex v2, and 3 for v3. Again taking into
account the prime symmetry, there are the 5 constraints v1v2 = v2v3 = v3v4 = 1 and
v1v3 = v2v4 = v3v5, which leave the parameters q and x. And, as will be seen below,
for a fixed q, these hexagons depend on x and are continuously deformable. Therefore,
boats, crosses, twists, and lows are called flexible hexagons.

At this point, we make a short excursion to hexagons with coinciding vertices: Since
q>0, coinciding vertices can only occur if at least one of the diagonals x, y, or z equals
0. This requires that every triangle of consecutive vertices be equilateral or, equiva-
lently, that q=1. Furthermore, it follows that coinciding vertices are always double ver-
tices.

Consider the Figures 4 -7: The symmetry class of crowns obviously contains a hexagon
with q=1. As regards the other classes, q=1 stands for limiting cases with at least one
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double vertex. For q→1 one obtains two planar figures, from the stars an equilateral tri-
angle with side 1 (three double vertices) and from the crosses and twists a rhombus with
side 1 and a diagonal 1 (two double vertices). The boats result in what we call the penta-
boat (Figure 8a). From the lows we generally get penta-lows (Figure 8b) and by special
limiting processes again the penta-boat or rhombus. Note that all these limiting cases
also follow from the formulas for the diagonals x, y, and z in Theorems 8, 12, and 14
below. Additionally, there exist tetras (Figure 8c); however, these are not limiting cases
of other hexagons.

It is easily seen that, apart from the hexagons in Figure 8, further (regular spatial) hexa-
gons with double vertices do not exist. Of course, the penta-boat and the boats have the
same symmetry group, as well as the penta-lows and the lows. The symmetry group of
tetras is the same as that of boats, but s(π1) is a reflection whereas in boats it is a rota-
tion.
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a. the penta-boat (y=z). b. penta-low. c. tetra.

Figure 8: Hexagons with double vertices (q = 1).

5 Some properties

We return to hexagons without double vertices. In the following, contained tetrahedra
of a hexagon are understood to be those with hexagon vertices. The first theorem ex-
presses that the lows are in some way general hexagons:

Theorem 5. A hexagon is a low if and only if none of the contained tetrahedra are
degenerate.

Proof. We show that a contained degenerate tetrahedron would lead to symmetries in
addition to those of a low. Without loss of generality, it suffices to examine a tetrahe-
dron with four, with three, and with two consecutive vertices: T1 = v1v2v3v4, T2 =
v1v3v4v5, and T3 = v2v3v5v6.

Assume that T1 is degenerate. Then, from the prime symmetry (a rotation) it follows
that T1 and T1′ = v4v5v6v1 are congruent quadrangles, either isosceles trapezoids with
the common base x or parallelograms with the common diagonal x. Both imply a sym-
metry plane containing x.
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Assume that T2 is degenerate. Again, as a consequence of the prime symmetry, we have
congruent quadrangles T2 and T2′ = v4v6v1v2, which here are kites with the common
diagonal x. This implies a further symmetry axis containing x.

A degenerate T3 is a parallelogram with diagonals y and z or an isosceles trapezoid
with bases y and z. Consider the mid-perpendicular planes of v2v6 and v3v5. The ver-
tices v1 and v4 must lie on both planes. In the case of the parallelogram, the planes are
parallel and must therefore coincide and we would have a symmetry plane. In the case
of the isosceles trapezoid, the planes must coincide again; otherwise it is v1v2 = v1v5
and thus q=1. Once more, we would have a symmetry plane, provided that the lateral
sides are q (in a trapezoid with diagonals q coinciding planes are impossible).

Conversely, it is seen from Figures 4-6 that the symmetry properties of hexagons dif-
ferent from lows lead to contained degenerate tetrahedra.

The next theorem confirms what is to be expected:

Theorem 6. A hexagon has intersecting sides if and only if it is a star, a boat with
q<1, or a cross.

Proof. Intersecting sides result in a degenerate contained tetrahedron. Hence, by The-
orem 5, lows with intersecting sides can be excluded. This also applies to twists, which
can be seen as follows: For intersecting sides it is necessary that three consecutive sides
or two opposite sides lie in a plane. It is easy to check that both are impossible; just take
into account that the triangles v1v2v6 and v4v5v3 in Figure 6b lie in two different
planes, which intersect in the symmetry axis containing x. The rest of the proof follows
by inspecting the remaining hexagons in Figures 4, 5, and 6a.

The hexagons different from lows and twists contain rectangles, which are involved in
the following:

Theorem 7. In a crown (with q 6= 1) and boat or in a star and cross, consider one of the
two vertices that do not belong to a contained rectangle. If this vertex and its adjacent
sides are reflected across the rectangle plane, the crown becomes a boat and the star a
cross, and conversely.

Proof. We consider the tinted rectangles in Figure 9. Let v′1 be the point obtained by
reflecting v1 at the rectangle plane. Since a reflection is length-preserving, it is clear by
inspection that the vertices v1, v2, . . . , v6 form a crown exactly if v′1, v2, . . . , v6 form a
boat, and analogously for a star and a cross.

Remark. For q=1, we have a corresponding relation between the crown and the penta-
boat. The sides of both hexagons are edges of the same octahedron.
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Figure 9. Hexagons represented by diagonal points (x, y, z).
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a. crown and boat. b. star and cross.

Figure 9: Related hexagons.

Next, we look at the diagonals of the hexagons just discussed:

Theorem 8. The diagonals of hexagons different from twists and lows with y = z are
given by

crowns: any q , x = y = z =
√

1 + q2; (4)
stars: q < 1, x = y = z =

√
1− q2; (5)

boats: q 6= 1, x = |1− q2|, y = z =
√

1 + q2; (6)
crosses: q < 1, x =

√
1 + 2q2, y = z =

√
1− q2. (7)

Proof. The ranges of q are evident for crowns (already used in the proof of Theorem 1)
and for stars. Theorem 7 implies that these ranges accordingly apply to boats (for q 6=1)
and to crosses. The diagonals x, y, and z are directly given by the Pythagorean theorem
with the exception of x for boats and crosses. For these, we must examine the quadran-
gle v1v2v3v4, which is a trapezoid in boats (Figure 5) and a parallelogram in crosses
(Figure 6a), so that x can be calculated by using Ptolemy’s theorem and the parallelo-
gram law, respectively.

From now on, we primarily focus on flexible hexagons. Further, in the following the
concept of tetrahedron will also include degenerate cases.

Theorem 9. In a flexible hexagon, let T and T ′ be the two contained congruent tetra-
hedra determined by consecutive hexagon’s vertices and a common edge d, which is a
diagonal x, y, or z. Then T is mapped onto T ′ by a rotation with axis containing d and
angle ϕ where

cosϕ =
(d2 − 1)2 + (q2 − 1)2 − 1(
(d+ q)2 − 1

)(
(d− q)2 − 1

) . (8)

Proof. Without loss of generality, we can consider d = x and thus T = v1v2v3v4 and
T ′= v1v6v5v4, as shown in Figure 10. The composition of the rotational symmetry of
T (axis through the midpoints of x and v2v3) and the prime symmetry (also a rotation)
leaves v1 and v4 fixed and maps v2 7→ v6 and v3 7→ v5. Thus, this composition must be
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the stated rotation. Formula (8) is obtained by calculating the dihedral angle ϕ at edge x
of the tetrahedron T ∗= v1v2v4v6.

Remark. The rotation angle ϕ can be limited to 60◦ ≤ ϕ ≤ 180◦. The lower bound
follows because v2v4v6 is a q-triangle with angle 60◦ at v4, whereas 180◦ for the upper
bound is evident. With 60◦ we obtain the crosses and with 180◦ the twists.
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Figure 10: Congruent tetrahedra in a flexible hexagon related by a rotation.

Theorem 9 helps prove the following:

Theorem 10. A hexagon has a circumscribed sphere if and only if it is a rigid hexagon
or a boat.

Proof. The rigid hexagons obviously have a circumscribed sphere. It remains to show
that a flexible hexagon with a circumscribed sphere must be a boat: For at least two
diagonals d the tetrahedra T and T ′, as considered in Theorem 9, are nondegenerate;
otherwise the hexagon would be planar. Without loss of generality, we can assume that
this is true for d = y and for d = z. Let T and T ′ be the tetrahedra with common d = y.
Since the circumscribed sphere of the hexagon must coincide with those of T and T ′,
it follows from Theorem 9 that y is a diameter. Analogously, z is a diameter as well.
Hence, y and z are equal and bisect each other, so we have the rectangle of a boat (see
Figure 5).

We complete this section with an application:

Let us consider the special boat determined by the diagonals from (6) with q > 1 and
x = q. It follows that q = Φ (golden ratio) and thus α = 108◦. Further, consider the ro-
tation according to Theorem 9 with d = z and angle ϕ = 144◦ (resulting from (8)).

Rotating the tetrahedron T = v6v1v2v3 not only with ϕ, but also with 2ϕ, 3ϕ, and 4ϕ
leads to 5 bundled boats, as shown in Figure 11a. It turns out that the 12 vertices form
an icosahedron with edge length 1. Simple counting yields 30 such boats with α=108◦

in total.
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Moreover, by inspection one finds that the icosahedron additionally contains 5 bundled
boats, as shown in Figure 11b, with the (exceptionally) larger side s = Φ, q = 1 and
thus α=36◦, and ϕ = 72◦. The total number of these boats is again 30.

By Theorem 7, the icosahedron also contains crowns, 10 with s = 1 and 10 with s = Φ.
It is easily seen that stars or further boats and crowns do not exist. And from Theorem
10 it follows that any other regular spatial hexagon, where the vertices are the corners of
the icosahedron, can be excluded as well.

Of course, the mere number of overall 80 regular spatial hexagons can also be found
with a computer program that tests all

(
12
6

)
5!/2 (=55440) six-rings contained in an ico-

sahedron.
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a. s = 1 and α = 108◦. b. s = Φ and α = 36◦.

Figure 11: Five bundled boats in an icosahedron with edge length 1.

6 Vertex coordinates

We now develop a coordinate representation for the vertices of hexagons. This facili-
tates determining the diagonals of flexible hexagons and thus, in addition to Theorem
8, those of twists and lows. From calculations we only give results. (To reproduce the
computation, it is advisable to use a computer algebra system.)

The existence of flexible hexagons is guaranteed as follows:

Theorem 11. A flexible hexagon with diagonals q and x exists if and only if

m1 ≤ x ≤
{
M1 for q < 1
M2 for q > 1

with (9)

m1 = |1− q2|, M1 =
√

1 + 2q2, M2 = 1
2

(√
3 q +

√
4− q2

)
.

Proof. As a first step, we consider separately the contained tetrahedron T =v1v2v3v4.
For a fixed q, the edge x of T monotonically increases from a lower bound m1 to an
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upper bound M1 by varying the dihedral angle at the opposite edge v2v3 from 0◦ to
180◦. Since 0◦ appears in a boat (see Figure 5) and 180◦ in a cross (see Figure 6a), we
obtain m1 from (6) and M1 from (7).

As a second step, we include the vertices v5 and v6. Theorem 9 (with d=x) implies that
it suffices to ensure the existence of the vertex v6 or, equivalently, of the tetrahedron
T ∗=v1v2v4v6. For a fixed q, the possible edges x of the separately considered T ∗ are
the result of varying again the dihedral angle at the opposite edge v2v6 from 0◦ to 180◦,
and with the Pythagorean theorem we get the lower bound m2 = 1

2 |
√

3q −
√

4− q2|
and the upper bound M2.

It is shown that m1>m2, M1<M2 for q<1, and M1>M2 for q>1. Since the exis-
tence of the hexagon is guaranteed exactly if both tetrahedra T and T ∗ exist, we finally
obtain the necessary and sufficient condition from (9).

The upper bound M2 is involved in the twists:

Theorem 12. The diagonals of twists with y = z are given by

q > 1, x = 1
2

(√
3 q +

√
4− q2

)
, y = z =

√
1 + 2q2 − q

√
3(4− q2). (10)

Proof. Consider a twist with x 6= y = z (see Figure 6b). Due to the symmetry, the
tetrahedron T ∗=v1v2v4v6 is degenerate (it is a kite) with 180◦ for the dihedral angle at
v2v6. From the proof of Theorem 11 it follows that the latter is true exactly if q > 1
and x = M2 from (9). The diagonal y can be determined by a repeated use of the
Pythagorean theorem. Nevertheless, this derivation becomes rather cumbersome, and y
is also obtained by inserting x = M2 in Theorem 14 below.

In the following two theorems, we refer to flexible hexagons with any diagonals q, x, y,
and z.

Theorem 13. Let x be from (9) and ϕ defined by (8) with d=x. Then coordinates of the
vertices v1, v2, . . . , v6 of flexible hexagons are given by

v1,4 = (± 1
2x, 0, 0), v2,3 = (±a,±b, c),

v5,6 = (∓a, ∓ b cosϕ− c sinϕ, ∓ b sinϕ+ c cosϕ) with
(11)

a =
q2 − 1

2x
, b =

1

2x

√
x2 − (q2 − 1)2, c =

1

2

√
2q2 − x2 + 1.

Proof. The tetrahedron T = v1v2v3v4 with x from (9) is placed in a coordinate system
such that x lies on the first coordinate axis, and the axis of the rotational symmetry of
T on the third coordinate axis. One verifies that v1v2 = v2v3 = v3v4 = 1 and v1v3 =
v2v4 = q. Using Theorem 9 with d = x and an appropriate rotation matrix, we obtain
the remaining vertices v5 and v6.
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Remarks. a. After substituting cosϕ and sinϕ by means of (8), the vertex coordinates
are expressed with q and x by rational operations and square roots.
b. It is possible to limitϕ to 60◦ ≤ |ϕ| ≤ 180◦ (cf. Remark to Theorem 9). A positiveϕ
leads then to diagonals with y ≥ z and a negative ϕ to those with y ≤ z.
c. For ϕ = 180◦, one obtains v5,6 = (∓a,±b,−c), which implies that the three sym-
metry axes of a twist are the axes of the chosen coordinate system.
d. Setting q = 1 gives the vertices of pentas.
e. Substituting b with −b would change the orientation of chiral hexagons (lows and
twists).

Corollary 13.1. The coordinates of v1,4 and v2,3 from (11) can also be used in the case
of rigid hexagons. Then the coordinates of crowns are given with q and x from (4) and
the remaining vertices v5,6 = (∓a,∓b,−c), and those of stars with q and x from (5)
and v5,6 = (∓a,±b, c).

Proof. This follows immediately in both cases by applying the prime symmetry.

The coordinates of flexible hexagons now allow to calculate their diagonals. It should
be added that the diagonals can also be determined without coordinates, by using dis-
tance geometry for instance; see manuscript <<Diagonals of regular spatial hexagons
determined by distance geometry>>.

Theorem 14. The diagonals of flexible hexagons are given by

q 6= 1, x from (9), y =

√
f ± g
h

, z =

√
f ∓ g
h

with (12)

f = −(q2 + 1)x4 + 2(q4 + q2 + 1)x2 + (q2 − 1)3,

g = 2q
√(

x4 − (q2 + 2)x2 + (q2 − 1)2
)(
x2 − 2q2 − 1

)(
x2 − (q2 − 1)2

)
,

h = (x+ q + 1)(x+ q − 1)(x− q + 1)(−x+ q + 1).

Proof. It remains to determine the diagonals y = v2v5 and z = v3v6 using the coordi-
nates from (11).

Remarks. a. Of course, pairwise distinct x, y, and z are the diagonals of lows. In the
special cases where exactly two diagonals are equal, (12) gives (up to permutations) the
diagonals from (6) of boats, from (7) of crosses, or from (10) of twists.
b. For q=1, one obtains the pentas.

Corollary 14.1. Among the diagonals x, y, and z of all hexagons with a fixed q ( 6= 1),
m1 from (9) of a boat is smallest, M1 of a cross for q < 1 and M2 of a twist for q > 1
are largest.

Proof. For a fixed q (6= 1), the diagonals from (4) and (5) of rigid hexagons are between
the extreme values from (9) of flexible hexagons.
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7 Summary and further properties

The derived results are now summarized by using a specific representation. To every
hexagon (whether it has double vertices or not) with diagonals x, y, and z, we assign a
point (x, y, z) in E3, called a diagonal point. Figure 12 shows the diagonal points with
x ≥ y ≥ z (left) and with any x, y, and z (right), according to Theorem 14. There is
a one-to-one correspondence between the diagonal points on the left and the classes of
congruent hexagons.
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Figure 9. Hexagons represented by diagonal points (x, y, z).
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Regular spatial hexagons are non-planar polygons with six equal sides and equal
angles between consecutive sides. In this paper, we present an overview of all these
hexagons. First, elementary group theoretical considerations reveal that six classes
of hexagons can be distinguished, with each class being characterized by a specific
symmetry group. A second approach, based on a fundamental theorem of distance
geometry, facilitates the computation of the diagonals within the hexagons, including
those with coinciding vertices. The derived results are summerized by means of a
particular kind of representation. Lastly, we examine some special properties of the
hexagons. The reader is also referred to a series of GIF-animations that graphically

4

Figure 12: Hexagons represented by diagonal points (x, y, z).

Let us consider in more details the diagonal points on the left of Figure 12: The points
of flexible hexagons and the pentas form an area; its interior points represent lows and
penta-lows, and the points on the contour curves (without B, C, and D) boats, crosses,
twists, and the penta-boat. The rigid hexagons lead to a line segment for both crowns
and stars. In addition, there are iso-q-curves, i.e., curves representing sets of hexagons
with a fixed q, especially pentas and tetras with q=1. These curves show that for each
given q, a rigid hexagon is isolated from the continuously connected flexible hexagons.

The points A, B, C, and D represent planar figures, which are limiting cases that do
not fall under our definition of hexagons. With q = 1, we have two planar figures, as
already mentioned at the end of Section 4, namely in A=(0, 0, 0) a triangle with three
double vertices and in B=(

√
3, 0, 0) a rhombus with two. Furthermore, with q=0 we

have in C = (1, 1, 1) a line segment between two triple vertices, and with q =
√

3 in
D=(2, 2, 2) the well-known regular planar hexagon.

Lastly, we consider on the right of Figure 12 a diagonal point P = (x, y, z) that repre-
sents a chiral hexagon H (low or twist). Of course, P also represents the mirror image
H ′ of H . Thus, a movement of P along the iso-q-curve defines a continuous trans-
formation of H and also one of H ′. Moving P around the whole iso-q-curve, the two
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transformations map H 7→H and H ′ 7→H ′ for q < 1, and H 7→H ′ and H ′ 7→H for
q > 1. This can be seen as follows: On the iso-q-curve there exist six diagonal points
that represent congruent hexagons if H is a low and three if it is a twist (due to permu-
tations of x, y, and z). Two such successive hexagons are in both transformations the
mirror image of each other exactly if a boat or cross (both achiral) is passed in between,
which occurs six times for q<1 and three times for q>1. Moreover, for a point P rep-
resenting a chiral hexagon H with q<1 (i.e., a low), the mirror image H ′ can never be
reached with a continuous transformation defined by a closed path from P to P on the
area limited to q<1.

Different aspects of this summary appear in the already mentioned animations in [8].
To conclude, we give some further properties of hexagons (without double vertices),
whose proofs are left to the reader.

Property 1. Assuming that q and x determine a hexagon, consider the four congruent
triangles with common side x, as shown in Figure 13. A hexagon can be generated by
rotations of the triangles around x until v2v3 = v5v6 = 1 and v2v6 = q.
This leads to a rigid hexagon if q and x satisfy (4) or (5) and the resulting congruent
tetrahedra v1v2v3v4 and v1v6v5v4 are differently oriented, and it leads to a flexible
hexagon if q and x satisfy (9) and the tetrahedra are equally oriented or degenerate.
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Figure 13

Property 2. Consider the net of a hexagon. By rotating all three outer triangles into the
same half-space with respect to the net-plane, one can generate the hexagons with q<1
and the crowns, i.e., the diagonals x, y, and z are then in one half-space.
For q > 1, the lows and boats are obtained by rotations such that the smallest of the
diagonals x, y, and z comes to lie in one and the other two in the other half-space. In
the case of the twists, the largest diagonal remains in the net plane and the other two
come to lie in different half-spaces.
If d denotes the involved diagonal, then the rotation angle % is given by

cos % =
2d2 − q2 − 2

q
√

3(4− q2)
.
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Property 3. For any two of the vectors −−→v1v4, −−→v3v6, and −−→v5v2 of a hexagon, the scalar
product is 1−q2.
The intermediate angle between two vectors becomes obtuse for q > 1 and acute for
q<1. A right angle occurs only in the crown with q=1 (and in pentas).

Property 4. The angle ϑ (0◦≤ϑ≤90◦) between the two different planes containing a
q-triangle of a hexagon assumes extreme values as follows:
ϑ = 0◦ in rigid hexagons and crosses;

ϑ = 90◦ in the boat with q =
√

3
2 , in the twist with q = 2

√
3
7 , and in one low for each

q in between.

Property 5. All six vertices of a hexagon are those of its convex hull.

Property 6. A hexagon without intersecting sides is unknotted.

In the last two properties, we refer to regular spatial hexagons with any side length s but
diagonals that are still denoted by q, x, y, and z. These hexagons, similar to those with
s = 1, are named s-hexagons.

Property 7. Given any positive lengths x, y, and z. If at least two of these lengths
are distinct, then they are the diagonals of exactly two incongruent s-hexagons similar
to flexible hexagons, one with q < s and another with q > s. If the three lengths are
equal, they are the diagonals of infinitely many inconguent s-hexagons similar to rigid
hexagons.

Finally, we need a special type of planar hexagons, called p-hexagons. These are de-
fined as non-regular point-symmetric planar hexagons whose diagonals between oppo-
site vertices are perpendicular to two parallel diagonals.

Property 8. Consider an s-hexagon that is similar to a flexible hexagon different from
a cross. Its orthogonal projection in direction of the axis of the prime symmetry is a
p-hexagon (see Figure 14). Conversely, each p-hexagon is the projection of such an
s-hexagon. The diagonals x, y, and z appear in the p-hexagon in true length.
The projected q-triangles are obtuse for q<s and acute for q>s, or equivalently, the
prime symmetry axis pierces the q-triangle areas exactly if q>s.
In the case of an s-hexagon similar to a cross, one obtains a projection with two double
vertices.
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